Final Report

ETHYL TERTIARY BUTYL ETHER ORAL ABSORPTION IN MALE AND FEMALE RATS

SUBMITTED TO:

Section 211(b) Research Group American Petroleum Institute 1220 L Street NW Washington, DC 20005

TESTING FACILITY:

RTI International* 3040 Cornwallis Road P.O. Box 12194 Research Triangle Park, NC 27709-2194

RTI Protocol: RTI-932

RTI Study Code: Rt05-932

RTI Report No. RTI/0209408.007 and 0212607.000

February 12, 2015

Imith i U

Timothy R. Fennell, Ph.D. Study Director

*RTI International is a trade name of Research Triangle Institute.

SUMMARY

Male and female Fischer 344 rats were administered a single gavage dose of ethyl tertiary butyl ether (ETBE) in aqueous solution (50 and 10 mg/kg). Prior to dosing, the rats were implanted with jugular vein cannulas for the serial sampling of blood. Blood samples were withdrawn at approximately 15, 30 min, 1, 2, 4, 8, and 24 hr. Samples were immediately placed in tared headspace vials and crimp sealed. The samples were weighed, and after addition of internal standard (MTBE), were analyzed by gas chromatography coupled with mass spectrometry (GC-MS) equipped with a headspace autosampler. No significant levels of ETBE were detected in the predosing samples collected from each animal. ETBE levels reached maximal values at the first timepoint (0.25 hr) and declined rapidly thereafter, falling to less than the limit of quantitation by 8 hr at the high dose and 2-4 hr at the low dose. Non-compartmental pharmacokinetic analysis was conducted for each animal using WinNonlin. No statistically significant differences between gender were observed in Tmax, apparent Cmax, half life, AUCall,

AUCINF(observed), or lamda z. At the high dose, elimination half lives of 1.061 ± 0.326 hr for males and 1.105 ± 0.340 hr for females were observed. At the low dose, elimination half lives of 0.508 ± 0.191 hr for males and 0.573 ± 0.176 hr for females were observed. Differences between dose levels in half life and AUCINF(observed)/Dose may be consistent with saturation of metabolism of ETBE. The study demonstrated that ETBE is taken up following oral administration, and is rapidly eliminated from blood.

Quality Assurance Statement

Study Title: Ethyl Tertiary Butyl Ether Oral Absorption in Male and Female Rats Sponsor: Section 211(b) Research Group, American Petroleum Institute **Protocol Number: RTI-932 Study Code:** Rt05-932

This study was audited by the Regulatory, Quality and Records Management - Quality Assurance Unit and the results of the inspections and audits were reported to the Study Director and management as identified below.

Inspections and Audits	Inspection and Audit Date(s)	Date Inspection/Audit Report Sent to Study Director and Management
Protocol Audit	August 3, 9, 14, 2006	August 14, 2006
Protocol Audit – Revised Protocol	February 15, 2007	February 15, 2007
Protocol Amendment	June 8, 2007	June 8, 2007
Blood Collection Inspection	June 21, 2007	June 21, 2007
Data and Report Audit	October 30-November 8, 2012	November 8, 2012
Report Review, revised draft report	January 12, 2015	January 13, 2015

Prepared by:

P. K. (Ner

Celia D. Keller **Quality Assurance Manager**

Reviewed by:

llians

Sandra Williams **Quality Assurance Specialist**

02/10/20/5 Date

02/10/2015 Date

İİ

Laboratory GLP Compliance Statement

This study was carried out in compliance with the EPA Good Laboratory Practices (GLP) Standards for Inhalation Exposure Health Effects Testing, 40 CFR part 79, subpart F § 79.60.

The method of synthesis of the test chemical ethyl tertiary butyl ether or its location was not available at the time of conduct of the study.

There were no significant protocol deviations (Appendix A) that would affect the integrity or quality of the study or the interpretation of the results. Raw data, and the final report generated as a result of this study are archived by the Sponsor at EPL Archives, Sterling, Virginia.

2/12/2015 ell

Timothy R. Fennell, Ph.D.

Date

Study Director

3/17/18

Sponsor's Representative

Date

Table of Contents

Page

1.0	INTRODUCTION1					
2.0	OBJECTIVES AND PROTOCOL 1	I				
3.0	MATERIALS AND METHODS	I				
3.1	Test Substance	1				
3.2	Reference Substances	2				
3.3	Test System	2				
3.4	Test Chemical Preparation and Analysis	3				
3.5	Gavage Dosing	1				
3.6	Collection and Analysis of Blood Samples	1				
	3.6.1 Blood Sample Collection	1				
	3.6.2 Blood Sample Analysis	5				
3.7	Data Collection and Reporting	5				
3.8	Pharmacokinetic Analysis	5				
4.0	RESULTS	5				
4.0						
4.1	Analysis of Test Chemical Identity and Purity					
		5				
4.1	Analysis of Test Chemical Identity and Purity	5				
4.1 4.2	Analysis of Test Chemical Identity and Purity	5				
4.1 4.2 4.3	Analysis of Test Chemical Identity and Purity	5 5 7				
4.1 4.2 4.3 4.4	Analysis of Test Chemical Identity and Purity					
4.1 4.2 4.3 4.4 4.5	Analysis of Test Chemical Identity and Purity	5 5 7 7 8				
4.1 4.2 4.3 4.4 4.5 5.0	Analysis of Test Chemical Identity and Purity	5 7 7 8				
4.1 4.2 4.3 4.4 4.5 5.0 6.0	Analysis of Test Chemical Identity and Purity					
4.1 4.2 4.3 4.4 4.5 5.0 6.0 7.0	Analysis of Test Chemical Identity and Purity. 6 Method Validation for Analysis of ETBE in Blood 6 Animal Dosing 7 Sample Analysis 7 Pharmacokinetic Analysis 7 DISCUSSION 8 REFERENCES 9 RECORDS AND REPORTS 9					

List of Tables

Page

Table 1.	Male and Female Fischer 344 Rats Administered ETBE	. 11
Table 2.	Dose Formulation Analysis	. 12
Table 3.	Dose of ETBE Administered by Gavage	. 13
Table 4.	Individual and Mean Blood Concentrations of ETBE in Male Rats Following Gavage Administration of 50 mg/kg ETBE	14
Table 5.	Individual and Mean Blood Concentrations of ETBE in Female Rats Following Gavage Administration of 50 mg/kg ETBE	15
Table 6.	Individual and Mean Bloods Concentration of ETBE in Male Rats Following Gavage Administration of 10 mg/kg ETBE	16
Table 7.	Individual and Mean Blood Concentrations of ETBE in Female Rats Following Gavage Administration of 10 mg/kg ETBE	17
Table 8.	Pharmacokinetic Analysis of ETBE Following a Single Gavage Dose of ETBE	. 18
Table 9.	Pharmacokinetic Analysis of ETBE Following a Single Gavage Dose of ETBE (excluding DF05)	19

List of Figures

Page

Figure 1.	Headspace GC-MS Analysis of ETBE in control blood with no added internal standard	20
Figure 2.	Headspace GC-MS Analysis of ETBE in control blood with internal standard	20
Figure 3.	Headspace GC-MS Analysis of ETBE in predose blood with internal standard	21
Figure 4.	Headspace GC-MS Analysis of ETBE in rat blood following dose administration.	21
Figure 5.	Example pharmacokinetic analysis for blood concentration of ETBE for Animal AM01, administered 50 mg/kg ETBE by gavage.	22

List of Appendices

- Appendix A: Approved Study Protocol, Amendments, and Deviations
- Appendix B: Test Chemical Analysis Report Ethyl Tertiary Butyl Ether I RTI Reference 12307-11
- Appendix C: Method Validation Plan, Analytical Method and Validation Report
- Appendix D: Pharmacokinetic Analysis
- Appendix E: Dose Formulation Analysis
- Appendix F: Blood Sample Collection and Analysis for ETBE

1.0 INTRODUCTION

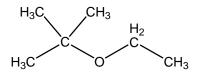
Ethyl *tertiary* butyl ether (ETBE) is an oxygenate used in the manufacture of blended gasolines. A number of studies have investigated the metabolism and pharmacokinetics of ETBE following inhalation exposure in rodents and humans (Amberg et al., 2000; Bernauer *et al.*, 1998; Dekant *et al.*, 2001; Johanson et al., 1995; Nihlen *et al.*, 1998a, 1998b). Metabolism of ETBE occurs via oxidation and subsequent conjugation or further oxidation (Bernauer *et al.* 1998; Dekant *et al.* 2001). Physiologically based pharmacokinetic models have been developed to describe the behavior of ETBE in rodents and humans. Despite intensive investigations of the behavior of ETBE following inhalation exposure, the kinetics of uptake and elimination following oral administration in rats had not been investigated previously.

2.0 OBJECTIVES AND PROTOCOL

The objectives of this study on ETBE were to:

Develop a method for the analysis of ETBE in blood by headspace gas chromatography – mass spectrometry (GC-MS).

Conduct an evaluation of oral absorption by measuring ETBE in blood in male and female Fischer 344 rats administered ETBE by gavage at one of two dose levels, 10 and 50 mg/kg.


Copies of the approved protocol and protocol amendments and protocol deviations for these studies are included in Appendix A.

3.0 MATERIALS AND METHODS

3.1 Test Substance

NAME: Ethyl tertiary Butyl Ether (ETBE; tertiary butyl ethyl ether, 2-ethoxy-2-methylpropane)

CAS No.: 637-92-3 MOLECULAR FORMULA: C₆H₁₄O MOLECULAR WEIGHT: 102.17 STRUCTURE:

SOURCE OF TEST SUBSTANCE: ETBE was purchased from Sigma-Aldrich, Milwaukee, WI (Catalog number 253898, specified purity 99%). A certificate of analysis was obtained from the vendor, which indicated a purity of 99.3%.

LOT NUMBER(S): 04608LD

IDENTITY AND PURITY: The identity of the unlabeled ETBE was confirmed at RTI by ¹H and ¹³C NMR, and by mass spectrometry. Details of the analysis conducted are contained in Appendix B. The purity of the test chemical was determined by GC with flame ionization detection (FID) also contained in Appendix B.

STORAGE CONDITIONS: ETBE was stored in the dark at room temperature.

STABILITY: Upon receipt, the identity and purity of the test substance ETBE was confirmed as described above. Periodically, and at the end of the experimental portion of the study, ETBE was reanalyzed by ¹H NMR and by GC-MS to verify stability. Initial analysis in March 2006 indicated a purity of 99.66 \pm 0.04%, with purity following the completion of the study of 99.26 \pm 0.17%. Details of the analysis are included in Appendix B.

3.2 Reference Substances

Methyl tertiary butyl ether (MTBE) was obtained from Sigma Aldrich (Milwaukee, Wi, Catalog number 443808, specified purity 99%). This material was assigned a chemical receipt number of BOC-B-0456.

3.3 Test System

Source: Male Fischer 344 rats for methods development were purchased from Charles River (Kingston, NY). Male and female Fischer 344 rats with jugular vein cannulae were obtained from Harlan Sprague Dawley (Indianapolis, In).

Diet: Animals were fed Certified Purina Rodent Chow #5002 and were furnished tap water *ad libitum.* The analysis of each feed batch for nutrient levels and possible contaminants was performed by the supplier, examined by the Study Director, and maintained in the study records. The feed was stored at approximately 60–70 °F, and the period of use did not exceed six months from the milling date. The source of the water was the City of Durham, NC. Approximately once a year, the City of Durham provides analyses of the drinking water for potential contaminants. Documentation of these analyses were inspected by the Study Director and maintained in the study records. In addition, samples of water were collected during the study for analysis of tertiary butyl alcohol, tertiary amyl methyl ether, ethyl tertiary butyl ether, diisopropyl ether, and methyl tertiary butyl ether. The samples were sent to Kiff Analytical (Davis, CA 95616) for analysis.

Identification: Individual ear tags were used to uniquely identify animals used.

Housing: Rats were housed (maximum of three per cage) in polycarbonate cages with stainless steel bar lids accommodating a water bottle until they were used in an experiment. Cage sizes are 19" x 10.5" x 8" high (143 sq. in. floor space). Contact bedding was Sani-Chips hardwood chips (P. J. Murphy Forest Products Co.; Montville, NJ). Cannulated rats were housed individually in polycarbonate cages with dimensions of 9 ¼" x 8 ¼" x 8" (ca. 76.3 sq. in. floor space), and were used within 1-3 days of arrival at RTI.

Following dosing, the cannulated animals were housed individually in polycarbonate cages with dimensions of 9 $\frac{1}{4}$ " x 8 $\frac{1}{4}$ " x 8" (ca. 76.3 sq. in. floor space), and were placed in a hood.

Quarantine: Rats without cannulas that were used as blood donors were quarantined for a minimum of one week. Rats with implanted jugular vein cannulas received a truncated quarantine period of 1 day. A veterinarian or qualified designee examined the animals prior to their release from quarantine.

Randomization: The ear tag numbers of animals were assigned in numerical order to sequential values using a series of computer generated numbers as described in SOP DPK-HUS-001 Assignment of Animals into Groups, using the procedure for Assignment of Animals within a Single Group or Multiple Groups without Regard to Weight Mean and Range. Four groups were prepared: Study A (n=9), Study B (n=9), Study C (n=9), and Study D (n=9). Animals were ordered specifically for each study, with Studies C and D performed 1 week later than Studies A and B. Of the animals in each group, the first four animals were administered ETBE and the remaining animals were held as extras in the event of dosing accidents or inability to obtain blood samples.

Environmental: Temperature and relative humidity in RTI animal rooms were continuously monitored, controlled, and recorded using an automated system (Siebe/Barber-Colman Network 8000 System with Revision 4.4.1 for Signal® software [Siebe Environmental Controls (SEC)/Barber-Colman Company; Loves Park, IL]). The target environmental ranges were 64–79 °F (18 °C - 26 °C) for temperature and 30–70% relative humidity, with a 12-h light cycle per day.

Euthanasia: At the end of the in-life phase, the rats were euthanized by overexposure to carbon dioxide.

3.4 Test Chemical Preparation and Analysis

ETBE was prepared for gavage dosing as a solution in water. For dosing of animals, the dose solution was prepared within 24 hours of dosing, and maintained in a refrigerator. The nominal concentration was calculated from the weight of ETBE and the weight of water added to the dose preparation. Dose solutions were prepared at two concentrations, the first at approximately 5 mg/ml and the second at 1 mg/ml, to ensure that the volume of dose administered per kg body weight is similar in the high and the low dose groups. Prior to dosing, a method was developed for the quantitative analysis of ETBE in water, by dissolving a weighed aliquot of the ETBE/water solution in methanol (see Appendix C). Aliquots of this solution were analyzed directly by gas chromatography (GC) using a standard curve

for the quantitation of ETBE. The stability of ETBE in water was determined by analysis of aliquots of a mock dose solution of ETBE kept at room temperature for three days (Appendix E).

3.5 Gavage Dosing

Each rat was weighed prior to dosing to determine the amount of dose to be administered. A single gavage dose was administered using a syringe fitted with a blunt tipped gavage dosing needle. The dose administered to each animal was determined from the weight of the full syringe minus that of the empty syringe. The dose time was recorded. Dosing of animals was spaced apart to allow blood collection at the appropriate times (see section 3.6.1 below). The groups were designated according to the dose administered and sex of the rats: Group A male 50 mg/kg, Group B female 50 mg/kg, Group C male 10 mg/kg, and Group D female 10 mg/kg. At least four cannulated rats per group were dosed with ETBE. Group and animal numbers are indicated in Table 1.

3.6 Collection and Analysis of Blood Samples

3.6.1 Blood Sample Collection

Blood samples were collected prior to dosing from each rat (time = 0), from 4 rats of each sex, at each dose at approximately 15 and 30 min, and at approximately 1, 2, 4, 8, and 24 hr after dosing. Jugular vein cannulated rats were maintained with the heparin lock solution supplied by the vendor untouched until the day of dosing. After removing the heparin lock solution, and verification of patency, the initial blood sample (time = 0) was collected. After this and subsequent samples, the cannula was filled with sterile isotonic saline (Baxter Healthcare Corporation), containing 20 units sodium heparin/mL (prepared with sodium heparin, 1000 units/mL, Baxter Healthcare Corporation), until the next sample. Prior to collection of the blood sample, the heparin/saline was removed from the cannula with a syringe and blunt needle until blood filled the cannula. The syringe contents were discarded. A fresh syringe and needle was then used to collect the blood sample.

Blood samples (approximately 100 µl) were drawn from the jugular vein cannula (except those indicated in the protocol deviation list) into a heparinized 1 ml syringe, and the sample was immediately placed in a preweighed headspace vial. The vial was immediately crimped and weighed, and the weight of the blood aliquot was determined. After the last sample had been collected from each animal at 24 hr, the rats were euthanized by exposure to CO₂. When cannulas failed during the collection of samples, several samples were collected at 15 and 30 min, and at 8 hr, via the tail vein, and at 24 hr, blood was collected by cardiac puncture under CO₂ anesthesia at sacrifice. The blood samples were maintained on ice, until placed in the headspace autosampler for analysis. All blood samples were analyzed by GC-MS within 24 hours of collection.

Blood samples from unexposed rats were used for method development. Blood samples were collected by cardiac puncture, under CO₂ anesthesia, and the rats were euthanized.

3.6.2 Blood Sample Analysis

A GC-MS method was developed for quantitating ETBE using blood from control male Fischer 344 rats. The methods involved the development of a standard curve for analysis of ETBE in the headspace of airtight vials containing a known volume of control blood and a known concentration of ETBE. The stability of ETBE was evaluated under storage conditions that were used in this study. This included analysis of ETBE immediately after spiking in control blood, after storage at room temperature (8 hr), and at approximately 4°C (24 hr). The concentration of ETBE in the headspace of vials containing a known volume of blood from rats administered ETBE by gavage was determined by comparison to the standard curve.

3.7 Data Collection and Reporting

Study data was collected and reported in the Debra[™] system version 5.5.10.75 (Lablogic Systems Limited, Sheffield, England). This includes data for dosing, dose times, sample collection times, and pot weights and sample weights. The data collected and calculations in Debra[™] are described in Appendix F, and were reported with the Debra[™] system.

3.7 Pharmacokinetic Analysis

Individual and mean blood concentration-time data for each dose and sex were analyzed by noncompartmental (model-independent) methods using the least-squares fitting program WinNonlin[™] (Statistical Consulting Inc., Cary, NC). Pharmacokinetic parameters were extracted from the WinNonlin generated outputs. These include:

	Pharmacokinetic Parameters						
WinNonlin Output	Table/Report						
Tmax	T _{max}	Time of maximum observed concentration.					
Cmax	C _{max}	Maximum observed concentration, occurring at $T_{\mbox{\scriptsize max}}$					
lambda_z	λ_z	Terminal elimination rate constant					
t1/2_lamda_z	$T_{1/2\lambda z}$	Terminal elimination half-life					
AUCall	AUCall	Area under the plasma concentration-time curve from time zero to the last measured time point					
AUCINF(observed)	AUCINF(observed)	Area under the plasma concentration-time curve from time zero extrapolated to infinity					
AUCINF(observed)/D	AUCINF(observed)/ Dose	Area under the plasma concentration-time curve from time zero extrapolated to infinity/Dose					
Vz(observed)/F*	Vz(observed)/F	Volume of Distribution at steady state					
Cl(observed)/F*	Clearance(observed)/F	Systemic clearance					
MRTlast	MRTlast	Mean residence time based upon values from the time of dosing up to the last measured concentration					

*For extravascular models the fraction of dose absorbed cannot be estimated, therefore Volume of Distribution and Clearance for these models are actually Volume/F or Clearance/F where F is the fraction of dose absorbed.

Statistical comparison of the parameters Tmax, Cmax, t1/2 Lambda z, Lambda z, AUCall, AUCobserved and AUCobserved/Dose were conducted using the Student's t-test available in SAS® Version 9 (SAS Institute Inc., 2004, 2005, 2006a,b). The males were compared to the females within dose group for each parameter. Additionally, for the parameter AUCobserved/Dose the low dose was compared to the high dose within each sex. Grubbs test for outliers was conducted to determine whether individual values were outliers (Grubbs, 1969).

4.0 RESULTS

4.1 Analysis of Test Chemical Identity and Purity

Information on the identity, purity, and stability of the test chemical is included in Appendix B. Prior to study initiation, the test chemical purity was determined by GC to be 99.66 ± 0.04 %. Following completion of the study, test chemical purity was determined to be 99.26 ± 0.17 %, indicating that the test chemical was stable under the conditions of storage.

4.2 Method Validation for Analysis of ETBE in Blood

A method for the determination of ETBE in blood using headspace GC-MS was developed and validated prior to the study conduct. Details of the method, the method validation plan, and the validation report are contained in Appendix C. The analytical method titled Project Specific Method for Analysis of Ethyl tertiary Butyl Ether in Blood Samples (AM-0209408.007) was validated in preparation for analyses of blood samples to determine concentrations of ethyl tertiary butyl ether (ETBE) present in blood in this study. This validation established a Limit of Quantitation (LOQ), accuracy, and precision of the method. The method consists of GC/MS analysis of ETBE with injection of headspace from sample vials.

The validation procedure established a calibration range of 0.110 μ g/ml to 250 μ g/ml for analysis of ETBE in the headspace of blood samples using two calibration curves. The low-concentration curve was defined by a linear regression (y=bx+a) of slope 0.08065, intercept -0.0006558, and linear correlation coefficient of 0.9998. The high-concentration curve was defined by the linear regression (y=bx+a) of slope 0.09673, intercept -0.1292, and linear correlation coefficient of 0.9994. Using the regression equation, calculated concentrations for all calibration standards were within the acceptance criteria of ± 15% (20% for the LOQ) of the nominal concentrations. The limit of quantitation was established as 0.11 μ g/ml. Mean calculated concentrations for the replicate concentration points assayed at 0.540 μ g/ml, 5.06 μ g/ml, and 101 μ g/ml for determination of precision and accuracy ranged from 96.2% to 99.3% of nominal concentration. Precision around the mean for each of these replicate concentration points was calculated to be well within the acceptance criteria of 15% CV. Additionally, the mean values for each

concentration were well within the acceptance criteria of 15% deviation from nominal concentration. Storage stability of ETBE in blood was verified at room temperature for 8 hr, and at approximately 4°C for 24 hr. Storage stability of standard solutions was verified at 7 days at approximately -20°C.

4.3 Animal Dosing

Animals were administered a single gavage dose of ETBE in water. Analysis of the ETBE dose solutions was conducted prior to dosing by GC with FID detection (see Table 2). The concentration of ETBE determined analytically was used to calculate the amount of ETBE dose solution to administer. The amount of dose solution administered was calculated by the difference between the weight of the charged syringe and needle with dose, and the discharged syringe and needle after dosing. Information on the doses administered is reported in Table 3. The doses administered were within \pm 10% of the target dose. Doses of ETBE were administered to 4 animals in each group AM, BF, and DF. Five animals were dosed in group CM, but one of these (CM-04) was dosed with less than the expected dose per kg body weight due to a dosing error (16.6 % less than expected). The error was discovered during the review of the dosing data immediately following dosing. One of the extra animals (the next animal in the series that had a patent cannula, CM-08) was dosed, and the samples that had been obtained from rat CM-04 were not analyzed with the exception of the predose sample, which was in the process of analysis.

4.4 Sample Analysis

Sample analysis was conducted on the day of collection, with a target of completing sample analysis within 16 hr of sample collection. Calibration curves prepared with rat blood with known concentrations of ETBE added were constructed, at the same time as sample analysis. Linear regression equations were derived for two standard curves: a low concentration curve, with concentrations ranging from 0.1 μ g/ml to 5.2 μ g/ml; and a high concentration curve, with concentrations ranging from 0.1 μ g/ml. Details of the calibration curves and method performance are provided in Appendix F. Blood concentration data for each dose group are reported in Tables 4-7.

With gavage administration of 50 mg ETBE/kg, ETBE reached a maximum in blood at the first timepoint (0.25 h), and declined rapidly, falling to <LOQ at 8 hr (Tables 4 and 5). Similarly, with gavage administration of 10 mg ETBE/kg, ETBE reached a maximum in blood at the first timepoint (0.25 h), and declined rapidly, falling to <LOQ by 2-4 hr in males and 2-4 hr in females (Tables 6 and 7).

4.5 Pharmacokinetic Analysis

Pharmacokinetic analysis was conducted using a non-compartmental model for extravascular input with uniform weighting. The WinNonlin output reports for individual animals are included in Appendix D. An example semilog plot of ETBE concentration vs. time for rat BF01 is shown in Figure 5. Semilog plots for each of the animals are shown in Appendix D. For animal DF05, the pharmacokinetic

behavior was considered different from the other animals in the group, and this animal was treated as a pharmacokinetic outlier as per the study protocol, section 9.0 Pharmacokinetic Analysis, item 4. A Grubbs test for outlier was not significant for the concentration of ETBE at 0.25 h. Data including and excluding this animal are presented in Tables 8 and 9. With DF05 included, the calculated half life for the low dose female group (DF) was 1.558 ± 1.976 hr (mean \pm standard deviation). However, a Grubbs test for outlier indicated that the value of t1/2_lambda_z of 4.513 h for DF05 was an outlier when compared with the mean value of 1.558 and standard deviation of 1.976 h for the DF group (p<0.05). Exclusion of DF05 reduced the mean half life by a factor of approximately three to 0.573 \pm 0.176 hr (Table 9).

The mean Tmax was achieved at the first time point following dosing in all dose groups (Table 9). This precluded accurate determination of Cmax and Tmax, since the absorption phase was not captured in the data obtained. The apparent Cmax values measured for males and females in the high dose groups, (AM and BF) were similar at 6.514 ± 0.727 , and $5.837 \pm 1.586 \mu$ g/ml. In the low dose groups, the Cmax values measured for males and females (CM and DF) were similar at 1.057 ± 0.174 , and $1.103 \pm 0.133 \mu$ g/ml. The half lives in males and females at the high dose were similar (1.061 ± 0.326 hr for males and 1.105 ± 0.340 hr for females). While there were no significant gender differences, the half lives in males and 0.573 ± 0.176 h for females). There was little difference in AUCall and AUCINF(observed) between genders, at both the high and low doses. However, when AUCINF(observed) was normalized by dose (AUCINF(observed)/D), the values calculated for the high dose ($0.123 \pm 0.014 \mu$ g.h/ml/mg/kg for AM, and 0.122 ± 0.004 for BF compared with 0.066 ± 0.004 for CM and 0.078 ± 0.016 for DF) were significantly different from the low dose.

5.0 DISCUSSION

This investigation indicated that the uptake of ETBE was rapid following gavage administration, with the highest concentrations observed at the first timepoint, and therefore the apparent Cmax was achieved at the first timepoint. No information on the uptake rate was determined from pharmacokinetic modeling, because the uptake phase was not captured in the sampling schedule. Since the absorption phase of the kinetic curve was not captured, the maximal concentrations of ETBE achieved may have occurred at a time earlier than the first sample, and may have been higher than that observed. ETBE was rapidly eliminated, and fell below the LOQ by 8 hr at the high dose, and by 4 hr in the low dose males, and 2-4 hr in the low dose females.

No statistically significant differences between males and females were observed in the pharmacokinetic parameters measured. There were however differences between the high and the low dose groups in both males and females. The longer half lives and increased AUCINF(observed)/D at the high dose are consistent with saturation of metabolism, which may be expected based on the requirement

for oxidative metabolism as one of the mechanisms for elimination of ETBE. However, because the concentration of ETBE rapidly reached LOQ at the low dose, the ability to determine saturation is limited.

6.0 **REFERENCES**

Amberg, A., Rosner, E. and Dekant, W. (2000). Biotransformation and kinetics of excretion of ethyl tertbutyl ether in rats and humans. Toxicol Sci 53:194-201.

Bernauer, U., Amberg, A., Scheutzow, D. and Dekant, W. (1998). Biotransformation of 12C- and 2-13Clabeled methyl tert-butyl ether, ethyl tert-butyl ether, and tert-butyl alcohol in rats: identification of metabolites in urine by ¹³C nuclear magnetic resonance and gas chromatography/mass spectrometry. Chem Res Toxicol 11:651-8.

Dekant, W., Bernauer, U., Rosner, E. and Amberg, A. (2001). Biotransformation of MTBE, ETBE, and TAME after inhalation or ingestion in rats and humans. Res Rep Health Eff Inst:29-71; discussion 95-109. Grubbs, F.E. (1969) Procedure for detecting outlying observations in samples. Technometrics, 11: 1-21. Johanson, G., Nihlen, A. and Lof, A. (1995). Toxicokinetics and acute effects of MTBE and ETBE in male volunteers. Toxicol Lett 82-83:713-8.

Nihlen, A., Lof, A. and Johanson, G. (1998a). Controlled ethyl tert-butyl ether (ETBE) exposure of male volunteers. I. Toxicokinetics. Toxicol Sci 46:1-10.

Nihlen, A., Lof, A. and Johanson, G. (1998b). Controlled ethyl tert-butyl ether (ETBE) exposure of male volunteers. II. Acute effects. Toxicol Sci 46:143-50.

SAS Institute Inc. (2004). SAS/STAT® User's Guide, Version 9.1, Cary, NC: 5136 pp.

SAS Institute Inc. (2005). SAS® Language Reference: Concepts, Version 9.1.3, Cary, NC: 664 pp.

SAS Institute Inc. (2006a). SAS® Language Reference: Dictionary, Version 9.1.3, Cary, NC: 1908 pp.

SAS Institute Inc. (2006b). SAS® Procedures Guide, Version 9.1.3, Cary, NC: 1934 pp.

7.0 RECORDS AND REPORTS

The following will be maintained in the record:

- a) Protocol and any amendments
- b) Animal receipt records
- c) Quarantine records
- d) Temperature and humidity records for the treatment rooms
- e) Animal research facility room logs
- f) Feed and water analysis for contaminants

- g) Randomization records
- h) Test chemical receipt, storage, and use records
- i) Balance calibration log references
- j) Correspondences
- k) All other raw data and documentation

Upon acceptance of the audited draft report by the Sponsor, a final report will be issued.

8.0 STORAGE OF RECORDS AND BIOLOGICAL SAMPLES

A copy of the final report and the records for this study, including all raw data, will be retained by the Sponsor, for the length of time specified in the appropriate regulations.

The test substance ETBE is an ether that can generate explosive peroxides on storage. Therefore, an archived sample of test chemical will not be retained. The samples of blood collected will not afford analysis beyond the duration of the study. Wet specimens of blood will be disposed of after quality assurance verification (after the QAU assures that discarding the samples does not negatively impact the integrity of the study).

9.0 REGULATORY COMPLIANCE

These studies were performed in compliance with the EPA Good Laboratory Practices (GLP) Standards for Inhalation Exposure Health Effects Testing, 40 CFR part 79, subpart F § 79.60. Deviations from the approved protocol are documented in Appendix A.

10.0 STUDY PARTICIPANTS

RTI International	
Study Director:	Timothy R. Fennell, Ph.D.
Veterinarian:	Christopher Johnson, D.V.M.
	Serena Young, D.V.M
Animal Facility Supervisor:	Natalie Ostin
Laboratory Staff:	Norman F. Gaudette, BS
	Yan Hong, BS
	Melody. P. Gower
	Purvi. Patel
	Donna Coleman
	Scott Watson
	Jennifer Demeter
	Christine Myers
Secretary:	Kathleen. G. Ancheta

Group	Subject	Species	Strain	Gender	Body Weight ^a (g)
Group A	AM01	Rat	Fischer 344	Male	150.57
Group A	AM02	Rat	Fischer 344	Male	161.91
Group A	AM03	Rat	Fischer 344	Male	158.09
Group A	AM04	Rat	Fischer 344	Male	146.05
Group B	BF01	Rat	Fischer 344	Female	135.82
Group B	BF02	Rat	Fischer 344	Female	132.95
Group B	BF03	Rat	Fischer 344	Female	138.13
Group B	BF04	Rat	Fischer 344	Female	131.39
Group C	CM01	Rat	Fischer 344	Male	139.26
Group C	CM02	Rat	Fischer 344	Male	141.44
Group C	CM03	Rat	Fischer 344	Male	135.27
Group C	CM04	Rat	Fischer 344	Male	180.64
Group C	CM08	Rat	Fischer 344	Male	150.54
Group D	DF01	Rat	Fischer 344	Female	136.36
Group D	DF02	Rat	Fischer 344	Female	129.57
Group D	DF03	Rat	Fischer 344	Female	140.44
Group D	DF04	Rat	Fischer 344	Female	137.40
Group D	DF05	Rat	Fischer 344	Female	130.57

Table 1. Male and Female Fischer 344 Rats Administered ETBE

^aBody weight on the day of dosing

Dose Formulation	Nominal Concentration (mg/ml)	Actual Concentration (mg/ml)	
		Mean	SD
ETBE 5 mg/mL Group A	5	5.2388	0.0960
ETBE 5 mg/ml Group B	5	5.2859	0.0707
ETBE 1 mg/mL Group C	1	1.1486	0.0058
ETBE 1 mg/mL Group D	1	0.9902	0.0081

Table 2. Dose Formulation Analysis.

Group	Subject	Treatment	Full Syringe Weight (g)	Empty Syringe Weight (g)	Dose Solution Admin. (g)	ETBE Admin. (mg)	Actual Dose (mg/kg)	Dose error (%) ^a
А	AM01	ETBE 5 mg/mL Group A	7.7369	6.3137	1.4232	7.4559	49.518	-0.96 %
А	AM02	ETBE 5 mg/mL Group A	7.8845	6.3096	1.5749	8.2506	51.958	1.92 %
А	AM03	ETBE 5 mg/mL Group A	7.8140	6.3036	1.5104	7.9127	50.052	0.10 %
А	AM04	ETBE 5 mg/mL Group A	7.6482	6.3065	1.3417	7.0289	48.127	-3.75 %
В	BF01	ETBE 5 mg/ml Group B	7.2363	5.9442	1.2921	6.8299	50.286	0.57 %
В	BF02	ETBE 5 mg/ml Group B	7.2166	5.9473	1.2693	6.7094	50.466	0.93 %
В	BF03	ETBE 5 mg/ml Group B	7.2905	5.9456	1.3449	7.1090	51.466	2.93 %
В	BF04	ETBE 5 mg/ml Group B	7.2328	5.9409	1.2919	6.8289	51.974	3.95 %
С	CM01	ETBE 1 mg/mL Group C	7.5584	6.3083	1.2501	1.4359	10.311	3.11 %
С	CM02	ETBE 1 mg/mL Group C	7.6016	6.3055	1.2961	1.4887	10.525	5.25 %
С	CM03	ETBE 1 mg/mL Group C	7.4832	6.2976	1.1856	1.3618	10.067	0.67 %
С	CM04 ^b	ETBE 1 mg/mL Group C	7.6203	6.3091	1.3112	1.5060	8.337	-16.63 %
С	CM08	ETBE 1 mg/mL Group C	7.6597	6.3382	1.3215	1.5179	10.083	0.83 %
D	DF01	ETBE 1 mg/mL Group D	7.3260	5.9315	1.3945	1.3808	10.126	1.26 %
D	DF02	ETBE 1 mg/mL Group D	7.2674	5.9193	1.3481	1.3349	10.302	3.02 %
D	DF03°	ETBE 1 mg/mL Group D	7.3515	5.9046	1.4469	1.4327	10.202	2.02 %
D	DF04	ETBE 1 mg/mL Group D	7.3276	5.9231	1.4045	1.3907	10.122	1.22 %
D	DF05	ETBE 1 mg/mL Group D	7.2577	5.9076	1.3501	1.3369	10.239	2.39 %

Table 3. Dose of ETBE Administered by Gavage

^a Dose error calculated as 100*((Actual dose – target dose)/target dose)
 ^b Rat CM04 was removed from the study because of a dosing error.
 ^c Rat DF03 was removed from the study because of loss of cannula patency.

	ETBE Concentration (µg/ml)								
Time (h)	AM01 AM02 AM03 AM04 Mean SD								
0	<loqª< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loqª<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>			
0.25	5.91	5.95	7.44	6.76	6.51	0.727			
0.5	3.59	3.04	4.99	2.97	3.65	0.938			
1	1.73	1.88	2.36	1.38	1.84	0.405			
2	0.566	0.630	0.690	0.673	0.640	0.0553			
4	0.311	0.269	0.261	0.336	0.294	0.0356			
8	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>			
24	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>			

Table 4. Individual and Mean Blood Concentrations of ETBE in Male Rats Following Gavage Administration of 50 mg/kg ETBE.

^a Less than the limit of quantitation, 0.11 μ g/ml

Table 5. Individual and Mean Blood Concentrations of ETBE in Female Rats Following Gavage Administration of 50 mg/kg ETBE.

	ETBE Concentration (µg/ml)								
Time (h)	BF01	BF02	BF03	BF04	Mean	SD			
0	<loq<sup>a</loq<sup>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>			
0.25	5.16	4.15	6.16	7.87	5.84	1.59			
0.5	4.12	2.92	3.33	4.05	3.60	0.578			
1	1.95	2.21	1.50	1.98	1.91	0.298			
2	1.10	0.923	0.697	0.627	0.836	0.215			
4	0.197	0.306	0.347	0.193	0.261	0.0779			
8	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>			
24	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>			

^a Less than the limit of quantitation, 0.11 μ g/ml

	ETBE Concentration (µg/ml)							
Time (h)	CM01	CM02	СМ03	CM08	Mean	SD		
0	<loq<sup>a</loq<sup>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>		
0.25	1.02	1.24	1.14	0.834	1.06	0.17		
0.5	0.423	0.503	0.547	0.436	0.48	0.05		
1	0.219	0.221	0.270	0.190	0.225	0.033		
2	0.0958	<loq< th=""><th><loq< th=""><th>0.0800</th><th>0.0879</th><th>0.0122</th></loq<></th></loq<>	<loq< th=""><th>0.0800</th><th>0.0879</th><th>0.0122</th></loq<>	0.0800	0.0879	0.0122		
4	0.029	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.029</th><th>0.000</th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.029</th><th>0.000</th></loq<></th></loq<>	<loq< th=""><th>0.029</th><th>0.000</th></loq<>	0.029	0.000		
8	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>		
24	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>		

Table 6. Individual and Mean Bloods Concentration of ETBE in Male Rats Following Gavage Administration of 10 mg/kg ETBE.

 a Less than the limit of quantitation, 0.11 $\mu\text{g/ml}$

Table 7. Individual and Mean Blood Concentrations of ETBE in Female Rats Following Gavage Administration of 10 mg/kg ETBE.

			ETBE Concen	tration (µg/ml)		
Time (h)	DF01	DF02	DF04	DF05	Mean	SD
0	<loq<sup>a</loq<sup>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
0.25	1.26	1.05	1.01	0.282	0.898	0.425
0.5	0.653	0.554	0.460	0.308	0.494	0.147
1	0.320	0.259	0.245	0.269	0.273	0.033
2	0.120	0.095	0.101	<loq< td=""><td>0.110</td><td>0.014</td></loq<>	0.110	0.014
4	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
8	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
24	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>

 a Less than the limit of quantitation, 0.11 $\mu\text{g/ml}$

	AN	N a	BI	a	CN	/l ^a	DI	b
Parameter	Male	Rats	Female	e Rats	Male	Rats	Femal	e Rats
	50 m	g/kg	50 m	g/kg	10 m	g/kg	10 m	g/kg
(units)	Mean	SD	Mean	SD	Mean	SD	Mean	SD
Tmax (h)	0.243	0.012	0.235	0.037	0.247	0.018	0.316	0.118
Cmax (μg/ml)	6.514	0.727	5.837	1.586	1.057	0.174	0.904	0.412
t1/2_Lambda_z (h)	1.061	0.326	1.105	0.340	0.508	0.191	1.558	1.976
Lambda_z (1/h)	0.694	0.181	0.667	0.174	1.525	0.581	1.018	0.691
AUCall (µg.h/ml)	5.641	0.762	5.795	0.401	0.571	0.035	0.560	0.268
AUCINF(observed) (µg.h/ml)	6.102	0.670	6.237	0.247	0.675	0.043	1.085	0.600
AUCINF(observed)/D (µg.h/ml/mg/kg)	0.123	0.014	0.122	0.004	0.066 ^b	0.004	0.106°	0.058

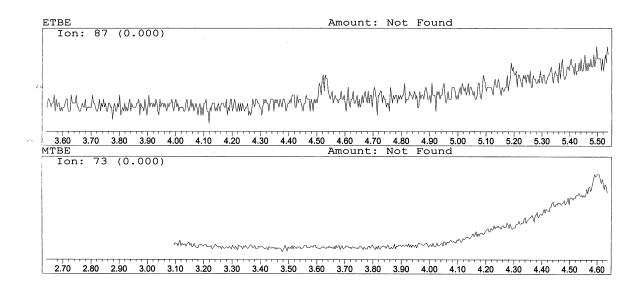
Table 8. Pharmacokinetic Analysis of ETBE Following a Single Gavage Dose of ETBE.

^a Values represent mean and standard deviation, n = 4.

^b Significantly different from AM, 50 mg/kg, p<0.05

^c Significantly different from BF, 50 mg/kg, p<0.05

	AN	/l ^a	BI	Fa	CI	/ ^a	DI	⊒b
Parameter	Male	Rats	Female	e Rats	Male	Rats	Female	e Rats
	50 m	g/kg	50 m	g/kg	10 m	g/kg	10 m	g/kg
(units)	Mean	SD	Mean	SD	Mean	SD	Mean	SD
Tmax (h)	0.243	0.012	0.235	0.037	0.247	0.018	0.257	0.023
Cmax (µg/ml)	6.514	0.727	5.837	1.586	1.057	0.174	1.103	0.133
t1/2_Lambda_z (h)	1.061	0.326	1.105	0.340	0.508	0.191	0.573	0.176
Lambda_z (1/h)	0.694	0.181	0.667	0.174	1.525	0.581	1.306	0.468
AUCall (µg.h/ml)	5.641	0.762	5.795	0.401	0.571	0.035	0.674	0.170
AUCINF(observed) (µg.h/ml)	6.102	0.670	6.237	0.247	0.675	0.043	0.792	0.156
AUCINF(observed)/D (µg.h/ml/mg/kg)	0.123	0.014	0.122	0.004	0.066°	0.004	0.078 ^d	0.016


Table 9. Pharmacokinetic Analysis of ETBE Following a Single Gavage Dose of ETBE (excluding
DF05).

^a Values represent mean and standard deviation, n = 4.

^b Values represent mean and standard deviation, n = 3.

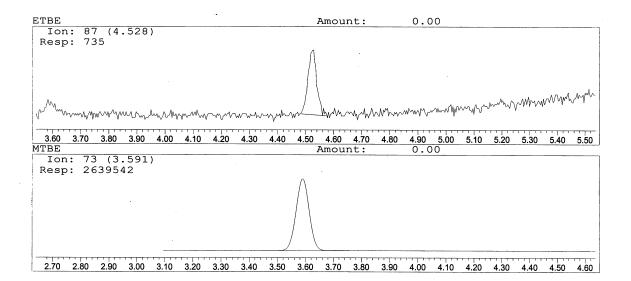
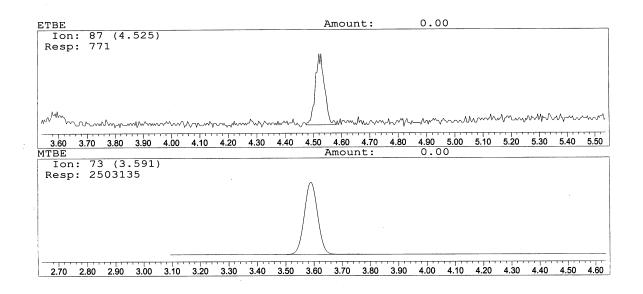

- ^c Significantly different from AM, 50 mg/kg, p<0.05
- ^d Significantly different from BF, 50 mg/kg, p<0.05

Figure 1. Headspace GC-MS Analysis of ETBE in control blood with no added internal standard. Upper panel: selected ion monitoring at m/z 87 (ETBE), and lower panel, selected ion monitoring at m/z 73 (MTBE, internal standard).


Figure 2. Headspace GC-MS Analysis of ETBE in control blood with internal standard.

Upper panel: selected ion monitoring at m/z 87 (ETBE), and lower panel, selected ion monitoring at m/z 73 (MTBE, internal standard).

Figure 3. Headspace GC-MS Analysis of ETBE in predose blood with internal standard.

Upper panel: selected ion monitoring at m/z 87 (ETBE), and lower panel, selected ion monitoring at m/z 73 (MTBE, internal standard).

Figure 4. Headspace GC-MS Analysis of ETBE in rat blood following dose administration.

Upper panel: selected ion monitoring at m/z 87 (ETBE), and lower panel, selected ion monitoring at m/z 73 (MTBE, internal standard).

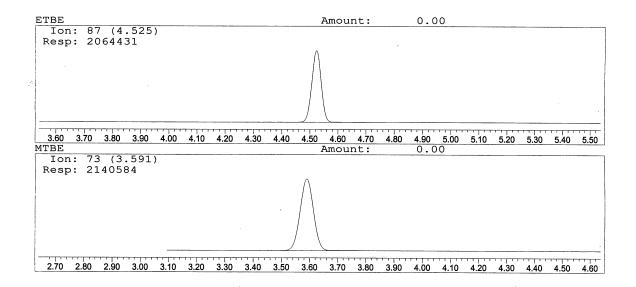
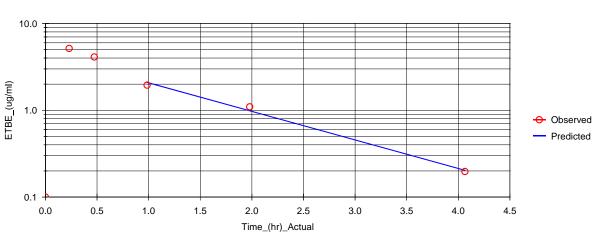



Figure 5. Example pharmacokinetic analysis for blood concentration of ETBE for Animal BF01, administered 50 mg/kg ETBE by gavage.

0209408.007, ETBE, RTI-932, Rats AM01-DF05 Analysis 1

Animal=BF01 Rsq=0.9938 Rsq(adjusted)=0.9877 t1/2_Lambda_z=0.9152

Appendix A

Approved Study Protocol, Amendments, and Deviations

PROTOCOL	POST OF	RNATIONAL FICE BOX 12194 CH TRIANGLE PARK, NC 27709	RTI- 932 Page 1 of 16			
TITLE: ETHYL TERTIARY BUTYL ETHER ORAL ABSORPTION IN MALE AND FEMALE RATS						
SPONSOR:						
TESTING FACILITY:						
RTI PROJECT NO.:		0209408.007				
RTI Study Code:		Rt05-932				
RTI STUDY DIRECT	OR:	Timothy R. Fe	nnell			
PROPOSED EXPER	IMENTAL STAR	TDATE: March 1st, 200	17			
PROPOSED EXPER	IMENTAL TERM	IINATION DATE: May 31st, 200	7			
AMENDMENTS:						
No.	Date	Section	Pages			
1						
2						
3						
4						
Momas M. Gray, MS Sponsor's Represent	, DABT	Date Dimothy R. Fehnell, Ph.D. Study Director RTI International	7 <u>eunu 2/23/07</u> Date			
		▪RTI International is a trade narr	e of Research Triangle Institute.			

PR	ROTOCOL	RTI INTERNATIONAL POST OFFICE BOX 12194 RESEARCH TRIANGLE PARK, NC 27709	RTI- 932 Page 2 of 16
		Table of Contents	
			Page
1.0	OBJECTIVE	5	4
2.0	PERSONNE		4
3.0	STUDY DES	IGN	4
4.0	JUSTIFICAT	IONS	5
4.1		es	
4.2	Numbers of A	Animals	5
4.3	Routes of Ad	ministration and Dose Levels	5
5.0	REGULATO		5
6.0	TEST SUBS	TANCE	6
7.0	ANIMALS		
7.1			
	7.1.1 Ident	ification	7
	7.1.2 Quar	antine	7
	7.1.3 Feed	and Water	7
		ronmental	
		mation and Housing during Studies	
7.2		on and Assignment of Animals to Treatment Groups	
7.3	• •	s	
7.4	Found Dead/	Moribund Animals	ε
7.5	Euthanasia		
8.0	STUDY PRO	CEDURES	9
8.1	Test Chemic	al Preparation and Analysis	9
8.2	Cannulation	of Rats for Blood Collection	
8.3	Dosing		g
8.4	Ante mortem	Observations and Functional Assessments	
8.5	Collection an	d Storage of Biological Samples	
	8.5.1 Bloo	d	
8.6	Analysis of B	lood Samples	
9.0	PHARMACO	KINETIC ANALYSIS	11

•

PROTOCOL		RTI INTERNATIONAL POST OFFICE BOX 12194 RESEARCH TRIANGLE PARK, NC 27709	RTI- 932 Page 3 of 16		
10.0	STATISTICA	L ANALYSIS	12		
11.0	DATA FROM	I "EXTRA" ANIMALS	12		
12.0	RECORDS AND REPORT				
13.0	MAINTENAN	14			
14.0	SAFETY PR	ECAUTIONS	14		
15.0	PROTOCOL AMENDMENTS AND DEVIATIONS				
16.0	REFERENCES15				
TABLE	TABLE 1. ANIMAL NUMBER ASSIGNMENT				

PROTOCOL		RTI INTERNATIONAL POST OFFICE BOX 12194 RESEARCH TRIANGLE PARK, NC 27709	RTI- 932 Page 4 of 16
1.0	OBJECTIVE The objective	S es of this study on ethyl <i>tertiary</i> butyl ether (ETBE) are to:	
	•	ethod for the analysis of ETBE in blood by headspace gas o	hromatography – mass:
specu	rometry (GC-M	5).	
	Conduct on	avaluation of and abcomtion by managing ETPE in bloc	d in male and female
Fische		evaluation of oral absorption by measuring ETBE in bloc ninistered ETBE by gavage at one of two dose levels, 10 and s	
Fische 2.0		ninistered ETBE by gavage at one of two dose levels, 10 and	
	er 344 rats adm PERSONNE • Timothy R • Susan Sur • Norman G • Rodney Si • Yan Hong, • Jem Scott	ninistered ETBE by gavage at one of two dose levels, 10 and	
	er 344 rats adm PERSONNE • Timothy R • Susan Sur • Norman G • Rodney Si • Yan Hong, • Jem Scott: • Melody Go	inistered ETBE by gavage at one of two dose levels, 10 and i L Fennell, Ph.D. , Study Director mner, Ph.D. – Chemist iaudette, B.S. – Research Chemist nyder, M.S. – Research Chemist , M.S. – Research Chemist - M.S. – Research Chemist - Emuakpor, DVM – Veterinarian	50 mg/kg.

3.0 STUDY DESIGN

For the pharmacokinetic (PK) analysis of ETBE, a GC-MS method will be developed for the quantitation of ETBE in blood. To provide rat blood for development and validation of the method, up to ten male rats will be sacrificed for the collection of control blood. The rats will be euthanized under CO_2 as needed, to provide blood, and exsanguinated by cardiac puncture.

For the analysis of blood concentrations, all time-point blood samples from ETBE exposures will be placed in glass crimp seal vials and sealed. Control blood samples will be used to develop a GC-MS method for analyzing the concentration of ETBE in blood. Once the method is verified, blood samples will be used to prepare a standard curve. Freshly prepared standards, consisting of rat blood to which a solution of ETBE is added, will be used for definitive pharmacokinetic studies. Details of the method will be recorded in the raw data.

ETBE will be administered in water at a dose of 10 or 50 mg/kg. For each dose level, six male rats and six female rats will be cannulated with jugular vein cannulas up to 4 days prior to dosing and the cannulas will be kept patent. Two additional male rats and two additional female rats will be cannulated and kept on hand in the event that a cannula fails. One additional male rat and one additional female rat will be available in the event of an accidental death prior to cannulation. ETBE will be administered by gavage in water. The syringe, needle and contents will be weighed prior to dosing, and after dosing the weight of the empty syringe and needle will be recorded. The weight of the dose administered will be calculated.

PROTOCOL	RTI INTERNATIONAL POST OFFICE BOX 12194	RTI- 932
	RESEARCH TRIANGLE PARK, NC 27709	Page 5 of 16

The only biological samples collected for analysis in this study will be blood.

It is anticipated that the study will be conducted with male rats administered 50 mg/kg ETBE on day 1, female rats administered 50 mg/kg on day 2. Analysis of the samples from this part of the study will be conducted prior to the start of the second portion of the study approximately 1 week later in which male rats will be dosed with 10 mg/kg ETBE on day 8 and female rats will be dosed with 10 mg/kg ETBE on day 9. Male and female rats will be ordered specifically for each dose group, and thus will not be randomly assigned to a treatment group.

4.0 JUSTIFICATIONS

4.1 Animal Species

The present studies are designed to evaluate pharmacokinetics of ETBE to provide information that will be used for safety assessments to humans. No *in vitro* techniques are available that allow for adequate determination of uptake, distribution, and excretion of chemicals by mammals. Fischer 344 rats are an established animal species and strain for toxicological testing and PK studies.

4.2 Numbers of Animals

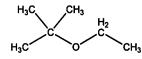
The numbers of animals used in this study are considered acceptable to develop the analytical procedures, and to conduct an evaluation of the pharmacokinetics of ETBE in male and female rats at two doses.

4.3 Routes of Administration and Dose Levels

The route of administration is one of the expected potential exposure routes in humans (through ground water). Oral administration is commonly used in toxicity or safety assessment studies. The dose vehicle, water, corresponds to a potential human exposure scenario. The doses are 10 and 50 mg/kg, and are expected to be without significant toxicity. The high dose was selected based on the concentration of ETBE that can be reasonably achieved in a dose volume of 10 ml/kg. The reported solubility of ETBE in water is 1.2%, which is expected to enable preparation of a solution of 5 mg/ml for gavage dosing.

5.0 REGULATORY COMPLIANCE

This study will be carried out in compliance with 40 CFR part 79, subpart F § 79.60 Good Laboratory Practices (GLP) Standards for Inhalation Exposure Health Effects Testing. The Quality Assurance Unit at the testing facility will prepare and sign a QA Statement to be included in the final report. It will specify the phases of the study that were inspected, the dates on which inspections were made, and the dates on which results of the inspections were reported to the Study Director and the Study Director's management.


PROTOCOL	RTI INTERNATIONAL POST OFFICE BOX 12194 RESEARCH TRIANGLE PARK, NC 27709	RTI- 932 Page 6 of 16

The final report will include a Compliance Statement signed by the Study Director that the final report accurately reflects the raw data obtained during the performance of the study and that there were no significant deviations from the Good Laboratory Practice regulations which affected the quality or integrity of the study. If deviations are encountered that will affect the quality or integrity of the study, each deviation will be described in detail.

6.0 TEST SUBSTANCE

NAME: Ethyl tertiary Butyl Ether (ETBE; tertiary butyl ethyl ether, 2-ethoxy-2-methylpropane)

CAS No.: 637-92-3 MOLECULAR FORMULA: C₈H₁₄O MOLECULAR WEIGHT: 102.17 STRUCTURE:

SOURCE OF TEST SUBSTANCE: ETBE will be purchased from Sigma-Aldrich, Milwaukee, WI (Catalog number 253898, specified purity 99%). A certificate of analysis will be obtained from the vendor.

LOT NUMBER(S): To be listed in the final report.

IDENTITY AND PURITY: The identity of the unlabeled ETBE will be confirmed at RTI by ¹H and ¹³C NMR, and by mass spectrometry. The purity of the test chemical will be determined by GC-MS.

STORAGE CONDITIONS: ETBE will be stored in the dark at room temperature.

STABILITY: Upon receipt, the identity and purity of the test substance ETBE will be confirmed as described above. Periodically, and at the end of the experimental portion of the study, ETBE will be reanalyzed by ¹H NMR and by GC-MS to verify stability.

7.0 ANIMALS

- 1. Species and Strains: Fischer 344 rats
- Approximate Age: 8-9 weeks old at time of dosing. (Male rats that are used as blood donors for analytical methods development may be significantly older than the 8-9 weeks of age, and this will not affect the study).
- 3. Approximate Weight: 200 g
- 4. Number/Sex: Up to 28 male rats and 18 female rats.
- 5. Sources: Charles River Laboratories Inc. (Kingston, NY) will be the primary source of animals. In the event that suitable animals cannot be provided from the primary source,

PROTOCOL

RTI INTERNATIONAL POST OFFICE BOX 12194 RESEARCH TRIANGLE PARK, NC 27709

RTI- 932 Page 7 of 16

acceptable alternate sources are Charles River Laboratories, Inc. (Portage, MI), and Harlan (Indianapolis, IN). The source(s) of all animals will be documented in the raw data, and included in the Final Report.

7.1 Husbandry

Research Triangle Institute is accredited by AAALAC International. Animal procedures detailed in this protocol are in accordance with the Animal Welfare Act, "Guide for the Care and Use of Laboratory Animals" (NRC, 1996), and the Office of Laboratory Animal Welfare (NIH). All animal procedures will be reviewed by RTI's Institutional Animal Care and Use Committee (IACUC) before initiation of the studies. In the opinion of the Sponsor and Study Director, the study does not unnecessarily duplicate any previous work.

7.1.1 Identification

Rats will be identified by individual metal eartags. All individual animal data will be referenced to either eartag number or to treatment group and animal number or to both. Cages will be individually coded by color and number that are related to dose and treatment group.

7.1.2 Quarantine

Uncannulated animals will be quarantined for a minimum of seven days before use on a study. Animals will be examined by a veterinarian or their representative prior to their release from quarantine, and only animals determined to be in good health as indicated by the absence of clinical signs will be used. During the quarantine period and prior to initiation of the experiments detailed in Section 8.0, rats will be housed (maximum of 3 per cage) in polycarbonate cages with stainless steel bar lids accommodating a water bottle. Cage sizes are approximately 19" x 10 1/2" x 8" high (ca.143 sq. in. floor space). Contact bedding will be Sani-Chips® (P.J. Murphy Forest Products Corp, Montville, NJ). Cannulated animals will be housed individually and will be used within 1-2 days of arrival at RTI.

7.1.3 Feed and Water

Animals will be provided Certified Purina Rodent Chow (5002) ad libitum. Water will be provided ad libitum. The source of the water is the City of Durham, NC. The analysis of water and analysis of the rodent chow for chemical composition and possible chemical contamination will be provided by the suppliers and maintained in the study records. Approximately once a year, the City of Durham provides analyses of the drinking water for potential contaminants. Documentation of these analyses will be inspected by the Study Director and maintained in the study records. In addition, approximately once per year, RTI conducts an analysis of drinking water contaminants using an outside laboratory. Samples of water will be collected before and after the study for analysis for tertiary butyl alcohol, tertiary amyl methyl ether, ethyl tertiary butyl ether, diisopropyl ether, and methyl tertiary butyl ether. The samples will be sent PROTOCOL

RTI INTERNATIONAL POST OFFICE BOX 12194 RESEARCH TRIANGLE PARK, NC 27709

RTI- 932 Page 8 of 16

to Kiff Analytical (Davis, CA 95616) for analysis. Documentation of these analyses will also be inspected by the Study Director and maintained in the study records. It is anticipated that contaminant levels will be below those permitted in the certified feed, and will not affect the design, conduct, or conclusions of this study. It is anticipated that contaminant levels measured in the water will not affect the design, conduct or conclusions of this study.

7.1.4 Environmental

Air circulation will be 100% fresh air. Room temperature will be maintained at 64–79°F and relative humidity at 30–70% and monitored at least once a day. Light/darkness will be cycled at 12-hr intervals. Any deviations from these conditions shall be included in the study records. Environmental parameters will be recorded automatically using a computerized HVAC Monitoring and Control System.

7.1.5 Acclimation and Housing during Studies

Animals will be acclimated for a minimum of 7 days prior to use on studies. Animals will be housed in polycarbonate cages with stainless steel lids. Following administration of ETBE, the cages will be placed in a hood for the duration of the post dosing period.

7.2 Randomization and Assignment of Animals to Treatment Groups

Animals designated as blood donors for method development will not be randomized. Animals designated for dosing with ETBE will be specifically ordered to be at the appropriate age and body weight at the time of dosing. To accommodate the dosing schedule, separate groups of 9 male and female rats will be purchased for each dose group. For each dose group, a total of 9 cannulated rats will be available prior to dosing. Animals within each treatment group will be assigned in numerical order a number from 1-9, using a series of computer generated numbers as described in SOP DPK-HUS-001 Assignment of Animals into Groups, using the procedure for Assignment of Animals within a Single Group or Multiple Groups without Regard to Weight Mean and Range. Animals assigned numbers 1–4 in the treatment groups will be designated as "core" members of the group; animals assigned higher numbers will be designated as "extra" animals (see Section 11.0 for an explanation of the use of the "extra" animals).

7.3 Body Weights

Individual body weights will be measured during the quarantine period, the day of exposure, and at sacrifice.

7.4 Found Dead/Moribund Animals

The Study Director or the veterinarian with the approval of the Study Director will authorize euthanasia of animals with life-threatening clinical signs that indicate that they are unlikely to survive until

the next recorded		vation. The time	of death wil	l be estimat	ed as prec	xisely as possib	le and
7.5 E	Euthanasia						
F	Rats will be euthar	ized with CO ₂ exp	osure.				
8.0 8		JRES					
8.1 1	est Chemical Pr	eparation and An	alysis				

ETBE will be prepared for gavage dosing as a solution in water. For dosing of animals, the dose solution will be prepared within 24 hours of dosing, and maintained at room temperature. The nominal concentration will be calculated from the weight of ETBE and the weight of water added to the dose preparation. Dose solutions will be prepared at two concentrations, the first at approximately 5 mg/ml and the second at 1 mg/ml, to ensure that the volume of dose administered per kg body weight is similar in the high and the low dose groups. Prior to dosing, a method will be developed for the quantitative analysis of ETBE in water, by dissolving a weighed aliquot of the ETBE/water solution in a suitable solvent such as methanol. Aliquots of this solution will be analyzed directly by gas chromatography (GC) using a standard curve for the quantitation of ETBE. The stability of ETBE in water will be determined by analysis of a mock dose solution of ETBE kept at room temperature for three days.

When appropriate methods have been developed for the detection of ETBE in blood, and for the quantitative analysis of ETBE in dosing solutions, and the stability of ETBE in blood and dose solution have been established, the animal study will be conducted.

8.2 Cannulation of Rats for Blood Collection

Rats with indwelling jugular vein cannullae will be purchased from Charles River Laboratories Inc., Kingston NY. Animals will be cannulated by the vendor, and shipped to RTI the day after surgery. The rats will be administered ETBE within 1 to 2 days after arrival at RTI. Cannula patency will be maintained with daily flushings with heparinized saline (sterile saline containing 20 IU/mL of sodium heparin).

8.3 Dosing

Each rat will be weighed prior to dosing to determine the amount of dose to be administered. A single gavage dose will be administered using a syringe fitted with a blunt tipped gavage dosing needle. The dose administered to each animal will be determined from the weight of the full syringe minus that of the empty syringe. The dose time will be recorded. Dosing of animals will be spaced apart to allow blood collection at the appropriate times (see section 8.5.1 below). The groups will be designated according to the dose administered and sex of the rats: Group A male 50 mg/kg, Group B female 50 mg/kg, Group C

PROTOCOL POST OFFICE BOX 12194 RESEARCH TRIANGLE PARK, NC 27709

RTI- 932 Page 10 of 16

male 10 mg/kg, and Group D female 10 mg/kg. At least four cannulated rats per group will be dosed with ETBE. Group and animal numbers are indicated in Table 1.

8.4 Ante mortem Observations and Functional Assessments

Animals will be observed twice per day for mortality, morbidity, signs of toxicity, and for any acute distress that might be related to the test procedure or test substances. Animals exhibiting adverse reactions will be closely monitored. All signs of poor health or abnormal behavior will be recorded. Moribund animals will be euthanized by CO₂ exposure following authorization by the Study Director or the veterinarian with the approval of the Study Director. Blood samples collected from dead or moribund animals will be included in the analysis if the animal was not moribund/dead at the time of collection. The Sponsor will be notified as soon as possible if it is anticipated that the sacrifice may affect the integrity of the study. If possible, an extra animal will be substituted for the animal removed from the study (see 11.0 Data from "Extra" Animals).

8.5 Collection and Storage of Biological Samples

8.5.1 Blood

Blood samples will be collected prior to dosing from each rat (time = 0), from 4 rats of each sex, at each dose at approximately 15 and 30 min, and at approximately 1, 2, 4, 8, and 24 hr after dosing.

Blood samples will be drawn from the jugular vein cannula into a heparinized 1 ml syringe, and the sample will be immediately placed in a preweighed headspace vial. The amount of blood will be approximately 100 μ l. The vial will be immediately crimped and weighed, and the weight of the blood aliquot will be determined. After the last sample has been collected from each animal at 24 hr, the rats will be euthanized by exposure to CO₂. Should cannulas fail between the 8 and 24 hr blood samples, blood will be collected by cardiac puncture under CO₂ anesthesia at sacrifice at 24 hr. The blood samples will be maintained at room temperature until analyzed. It is anticipated that blood samples will be analyzed by GC-MS within 24 hours of collection.

Blood samples from unexposed rats will be used for method development. Blood samples will be collected by cardiac puncture, under CO₂ anesthesia, and the rats will be euthanized.

8.6 Analysis of Blood Samples

A GC-MS method will be developed for quantitating ETBE using blood from control male Fischer 344 rats. The methods will involve the development of a standard curve for analysis of ETBE in the headspace of airtight vials containing a known volume of control blood and a known concentration of ETBE. The stability of ETBE will be evaluated under storage conditions that may be used in this study PROTOCOL RTI INTERNATIONAL POST OFFICE BOX 12194 RTI- 932 RESEARCH TRIANGLE PARK, NC 27709 Page 11 of 16

during this method development. This will include analysis of ETBE immediately after spiking in control blood, after storage at room temperature (8 hr), or at approximately 4°C (24 hr). The concentration of ETBE in the headspace of vials containing a known volume of blood from rats administered ETBE by gavage will be determined by comparison to the standard curve.

9.0 PHARMACOKINETIC ANALYSIS

Individual and mean blood concentration-time data for each dose and sex will be analyzed, as appropriate, by noncompartmental (model-independent) methods using the least-squares fitting program WinNonlinTM (Statistical Consulting Inc., Cary, NC). The following PK parameters will be determined as appropriate: terminal elimination rate constant, terminal elimination half-life ($T_{1/2}$), area under the blood concentration-time curve extrapolated from time zero to infinity (AUC), maximum concentration achieved (C_{max}), and time to maximum concentration (T_{max}).

Occasionally, a data point (i.e., a concentration) that cannot be predicted by a PK method of analysis may be encountered. The following procedure will be used to evaluate such data points as outliers.

- Identify suspected outliers by visual inspection of the data. Types of data points that should be considered as suspected outliers include non-zero concentrations prior to dosing, an individual concentration that is much different from that predicted by the PK method of analysis (such as lone high concentration preceded and followed by much lower concentrations).
- 2. Rule out physiological or other processes which may explain the suspected outlier. Certain processes, such as enterohepatic circulation or absorption from more than one site in the gastrointestinal tract, may result in unusual C-T profiles, which a PK method of analysis would be unable to approximate. Furthermore, non-zero concentrations at time zero may be possible if the analyte is present endogenously, or if some endogenous material interferes with the assay for the target analyte. If a concentration is deemed to be an outlier solely because it cannot be explained by PK methods of analysis, the possibility of some process which might explain it such as sample analysis should be considered.

 Once a concentration that is suspected as a PK outlier cannot be explained by PK methods of analysis or physiologic processes, the Grubbs method (Grubbs 1969) will be used to test whether it is an outlier.

4. If a concentration cannot be explained by PK methods of analysis and is substantially different from that seen in the other animals at the same time (based on the above

PROTOCOL POST OFFICE BOX 12194 RESEARCH TRIANGLE PARK, NC 27709	RTI- 932 Page 12 of 16
---	---------------------------

criteria), it is considered a PK outlier and will not be included in the calculation of PK parameters or mean concentrations. Reasons for exclusion will be documented in the raw data and in the final report.

10.0 STATISTICAL ANALYSIS

All blood concentration data will be reported in tables as the mean \pm standard deviation (SD). PK data will be presented as mean \pm SD. The methods to be used for statistical analysis will be added by amendment.

11.0 DATA FROM "EXTRA" ANIMALS

To better ensure that complete data from the required number of animals in each treatment group will be obtained, one or more additional animals, predesignated as "extras", will start the study as part of each treatment group. If a "core" study animal fails to complete the study due to loss of samples, misdosing, morbidity, etc., it will be replaced with a designated "extra" animal and data will cease to be obtained from the "core" animal. The "extra" animal will then become part of the "core" group and the original animal will be removed from the "core" group. All such substitutions will be documented as to reason and approved in writing by the Study Director. An "extra" animal may also be substituted for a "core" animal as described in Section 8.4. Terminal blood samples or blood samples obtained via the tail vein may be included in the analysis in the event that cannulas are no longer patent. Except for animals that become part of a "core" group, samples from "extra" animals will not normally be analyzed. However, all data obtained in the study will be reported. Data used to construct group means and to obtain PK parameters will consist of the data obtained from the "core" study animals (not the "extras"). except in cases where an "extra" has taken the place of a "core" animal. In that case, the data from the "extra" animal will be used instead, and data from the "core" animal that was eliminated from the study will not be used in these calculations. Data from the "core" animal that was eliminated from the study will be used in these calculations, if the data are from samples collected prior to elimination.

12.0 RECORDS AND REPORT

The following will be maintained in the record:

- a. Protocol and any amendments
- b. Animal receipt records
- c. Quarantine records
- d. Temperature and humidity records for the treatment rooms
- e. Animal research facility room logs
- f. Feed and water analysis for contaminants

PROTO	COL	RTI INTERNATIONAL POST OFFICE BOX 12194 RESEARCH TRIANGLE PARK, NC 27709	RTI- 932 Page 13 of 16
g.	Randomi	ization records	
h.	Test che	mical receipt, storage and use records	
i.	Balance	calibration log references	
j.	Correspo	ondences; and	
k.	All other	raw data and documentation.	
Re	esults of th	e studies will be described in an audited draft report, which	will be submitted to the
Sponsor fo	or approval	. This report will include but not be limited to:	
а.		nd address of the facility performing the study, dates on, and RTI study number.	of study initiation and
b.	••	of the signed, dated and approved protocol and all dev ents to the original protocol.	iations and authorized
С.	A detaile	d description of all methods used, including the randomization	n method.
d.	d. The lot number(s) of the test substances and details of the formulation of doses.		
e.	animal w and proc	nformation to include: supply source, species, strain or su reights (at randomization through sacrifice), approximate ago cedure used for individual animal identification and assign	e at initiation of dosing
	group. Tabulata	d individual results for blood concentration.	
		d mean results for blood concentration.	
-		okinetic and statistical analysis of the data.	
i.		tatement prepared and signed by QAU specifying that a	udits/inspections were
		to management and the study director.	
j.		ance statement signed by the Study Director.	
•	•	ance of the audited draft report by the Sponsor, a final report	ort will be issued. Two
		und copies of the audited draft report and two bound and one	
	t will be shi		
	Affairs America 1220 L Washin p: (202)	Swick tory Analysis and Scientific an Petroleum Institute Street NW igton, DC 20005) 682-8341 682-8031	

 PROTOCOL
 RTI INTERNATIONAL POST OFFICE BOX 12194
 RTI- 932

 RESEARCH TRIANGLE PARK, NC 27709
 Page 14 of 16

13.0 MAINTENANCE OF RECORDS AND RAW DATA

Records will be maintained in the laboratories of the study personnel while the studies are being conducted. Raw data generated while conducting the study and any transformations, calculations or operations performed on the data will be recorded in the study records. All original study records, protocols, amendments, and the final report will be stored in the RTI International archives, under the control of the RTI Quality Assurance Unit in accordance with EPA GLP regulations 40 CFR part 79, subpart F § 79.60 Good Laboratory Practices (GLP) Standards for Inhalation Exposure Health Effects Testing. Documentation and raw data will be maintained in the archives for a period of ten years following issuance of the final report. The test substance ETBE is an ether that can generate explosive peroxides on storage. Therefore, an archived sample of test chemical will not be retained. The samples of blood collected will not afford analysis beyond the duration of the study. Wet specimens of blood will be disposed of after quality assurance verification (after the QAU assures that discarding the samples does not negatively impact the integrity of the study).

Materials will be maintained in the RTI Archive for a period of one year after the signature of the final report as part of the initial study cost. At that point, the Sponsor will be contacted to determine the final disposition of these materials. The Sponsor may continue to store these materials in the RTI Archive, have RTI ship them to the Sponsor or an alternative archive facility, or have RTI dispose of them. The Sponsor will be responsible for all costs associated with the storage of these materials beyond 1 year from the issuance of the final report, and for any costs associated with the shipment of these materials to the Sponsor or to any other facility designated by the Sponsor.

14.0 SAFETY PRECAUTIONS

ETBE is a flammable liquid, with the potential to form explosive peroxides. The container should be tightly closed when not in use. Storage under a nitrogen atmosphere is recommended to avoid the generation of peroxides. Use personal protective equipment, including safety glasses, lab coat, and chemical resistant gloves.

15.0 PROTOCOL AMENDMENTS AND DEVIATIONS

This protocol may be amended by the Study Director with agreement of the Sponsor as the study progresses. Normally, a formal amendment will be prepared and signed by the Study Director and the Sponsor's Representative prior to the change. If instances arise where a change is urgent, the change may become effective upon approval by the Study Director. A notification of the urgent change will be sent to the Sponsor's Representative (email, facsimile, or telephone) as soon as feasible (no more than

Т

PROTOCOL	RTI INTERNATIONAL POST OFFICE BOX 12194 RESEARCH TRIANGLE PARK, NC 27709	RTI- 932 Page 15 of 16			
 24 h after the Study Director's approval). Subsequently, a formal protocol amendment will be prepared for approval by the Study Director and the Sponsor's Representative. Any deviations from the protocol that occur in the course of the conduct of the study will be documented. The cause for the deviation and its effect if any on the outcome of the study will be explained and the Study Director will sign the document. 					
16.0 REFERENC	ES				
National Research	Procedure for detecting outlying observations in samples. Tech Council (1996). Guide for the Care and Use of Laborato ress: Washington, DC.				
		<u></u>			

PROTOCOL	RTI INTERNATIONAL POST OFFICE BOX 12194 RESEARCH TRIANGLE PARK, NC 27709			RTI- 932 Page 16 of 16
TABLE 1. ANIMAL	. NUMBER ASSIGNN	IENT		
		Animal (Group ID	.
Initial Designation	Group A	Group B	Group C	Group D
	Male rats	Female rats	Male rats	Female rats
	50 mg/kg ETBE	50 mg/kg ETBE	10 mg/kg ETBE	10 mg/kg ETBE
Core	AM01	BF01	CM01	DF01
Core	AM02	BF02	CM02	DF02
Core	AM03	BF03	CM03	DF03
Core	AM04	BF04	CM04	DF04
Extra	AM05	BF05	CM05	DF05
Extra	AM06	BF06	CM06	DF06
Extra	AM07	BF07	CM07	DF07
Extra	AM08	BF08	CM08	DF08
	AM09	BF09	CM09	DF09

PROTOCOL	RTI INTERNATIONAL POST OFFICE BOX 121 RESEARCH TRIANGLE		RTI- 932 Amendment 1 Page 1 of 4			
AMENDMENT 1						
TITLE: ETHYL TE	TITLE: ETHYL TERTIARY BUTYL ETHER ORAL ABSORPTION IN MALE AND FEMALE RATS					
SPONSOR:	Section 211(b) Research Gro American Petroleum Institute 1220 L Street NW Washington, DC 20005					
TESTING FACILITY	: RTI International* Science and Engineering 3040 Cornwallis Road Post Office Box 12194 Research Triangle Park, NC	27709				
RTI PROJECT NO.:		0209408.007				
RTI Study Code:		Rt05-932				
RTI STUDY DIRECT	OR:	Timothy R. Fennell				
PROPOSED EXPER	PROPOSED EXPERIMENTAL START DATE:		June 13th, 2007			
PROPOSED EXPER	IMENTAL TERMINATION DAT	E: June 22nd, 2007				
Thomas M. Gray, M. Sponsor's Represent American Petroleum	tative	Timothy R. Fennell, Ph.D. Study Director RTI International	び_ よー//- 67 Date			
		*RTI International is a trade name of	f Research Triangle Institute.			

PROTOCOL	RTI INTERNATIONAL POST OFFICE BOX 12194 RESEARCH TRIANGLE PARK, NO	C 27709	RTI- 932 Amendment 1 Page 2 of 4
Protocol Change No	b.: 1		
Change (Tit	le Page, Page 1):		
PROPOSED EXPER	IMENTAL START DATE:	March 1st, 2007	
PROPOSED EXPER	IMENTAL TERMINATION DATE:	May 31st, 2007	
To:			
PROPOSED	EXPERIMENTAL START DATE:	June 13th	, 2007
PROPOSED	EXPERIMENTAL TERMINATION DATE:	June 22n	d, 2007
Reason for	-		
	he experimental start date and experime	ental termination dat	e as required by GLP
regu	lations.		
Protocol Change No	o.: 2		
	• Personnel, Page 2): -Emuakpor, DVM – Veterinarian		
	er Johnson, DVM – Veterinarian oung, DVM – Veterinarian		
Reason for	change:		
Dr. Scott-Em	uakpor is no longer employed by RTI.		
Protocol Change No	o.: 3		
Change (7.1	.2 Quarantine, Page 7):		
Cannulated animals	will be housed individually and will be used	l within 1-2 days of a	rrival at RTI.
То:			
Cannulated animals	will be housed individually in cages with d	imensions of 9 ¼" x	8 ¼" x 8" (ca. 76.3 sq.
in. floor space), and	will be used within 1-2 days of arrival at R1	٦.	
Reason for	change:		
To describe	the cages that will be used for individually	housing animals.	

PROTOCOL	RTI INTERNATIONAL POST OFFICE BOX 12194 RESEARCH TRIANGLE PARK, NC 27709	RTI- 932 Amendment 1 Page 3 of 4
Protocol Change No	b.: 4	
Change (7.1	.5 Acclimation and Housing during Studies, Page 8):	
Animals will be acclin	nated for a minimum of 7 days prior to use on studies.	
То:		
Animals will be accli	mated for a minimum of 7 days prior to use on studies. Can	nulated animals will be
acclimated for approx	ximately 1-2 days before use on studies.	
Reason for o	change:	
To clarify the acclima	ation for cannulated animals.	
Protocol Change No	b.: 5	
		the laboration lab
Kingston NY. Anima rats will be administer with daily flushings w To: Rats with indwelling Animals. Animals wi The rats will be adm dosing will be maint sodium heparin). Reason for the solution	source and shipment of animals. Clarification of when t	day after surgery. The ency will be maintained dium heparin). vendor described in 7.0 practical after surgery. nuula patency following containing 20 IU/mL of
Kingston NY. Anima rats will be administe with daily flushings w To: Rats with indwelling Animals. Animals wi The rats will be adm dosing will be maint sodium heparin). Reason for Clarification of the	als will be cannulated by the vendor, and shipped to RTI the ered ETBE within 1 to 2 days after arrival at RTI. Cannula path ith heparinized saline (sterile saline containing 20 IU/mL of soc jugular vein cannulae will be purchased from a commercial w Ill be cannulated by the vendor, and shipped to RTI as soon as ninistered ETBE within 1 to 2 days after arrival at RTI. Car tained with flushings with heparinized saline (sterile saline of change: source and shipment of animals. Clarification of when f nould start.	day after surgery. The ency will be maintained dium heparin). vendor described in 7.0 practical after surgery. nuula patency following containing 20 IU/mL of
Kingston NY. Anima rats will be administer with daily flushings w To: Rats with indwelling Animals. Animals wi The rats will be adm dosing will be maint sodium heparin). Reason for Clarification of the heparinized saline sh Protocol Change No Add (8.7 Dat	als will be cannulated by the vendor, and shipped to RTI the ered ETBE within 1 to 2 days after arrival at RTI. Cannula path ith heparinized saline (sterile saline containing 20 IU/mL of soc jugular vein cannulae will be purchased from a commercial will be cannulated by the vendor, and shipped to RTI as soon as ninistered ETBE within 1 to 2 days after arrival at RTI. Car tained with flushings with heparinized saline (sterile saline of change: source and shipment of animals. Clarification of when the nould start. b.: 6 ta Collection, Page 11):	day after surgery. The ency will be maintained dium heparin). vendor described in 7.0 practical after surgery. nuula patency following containing 20 IU/mL of
Kingston NY. Anima rats will be administe with daily flushings w To: Rats with indwelling Animals. Animals wi The rats will be adm dosing will be maint sodium heparin). Reason for Clarification of the heparinized saline sh Protocol Change No Add (8.7 Data 8.7 Data Collect	als will be cannulated by the vendor, and shipped to RTI the ered ETBE within 1 to 2 days after arrival at RTI. Cannula path ith heparinized saline (sterile saline containing 20 IU/mL of soc jugular vein cannulae will be purchased from a commercial will be cannulated by the vendor, and shipped to RTI as soon as ninistered ETBE within 1 to 2 days after arrival at RTI. Car tained with flushings with heparinized saline (sterile saline of change: source and shipment of animals. Clarification of when the nould start. b.: 6 ta Collection, Page 11):	day after surgery. The ency will be maintained dium heparin). rendor described in 7.0 practical after surgery. nula patency following containing 20 IU/mL of flushing cannulae with

PROTOCOL	RTI INTERNATIONAL	RTI- 932
FROTOCOL	POST OFFICE BOX 12194 RESEARCH TRIANGLE PARK, NC 27709	Amendment 1
		Page 4 of 4

administered in each animal. The Debra system will be used to calculate and report data for time between dosing and sample collection, and for weight of sample collected.

Temperature and humidity data will be collected using a computerized HVAC Monitoring and Control System. All other data, such as animal receipt and quarantine records, will be manually recorded unless noted otherwise in the study record.

Reason for change:

To clarify the systems used for collection of data.

RTI Protocol No. RTI-935 (RTI Project No. 020908.007)

Deviations from the Approved Protocol

The deviations listed below did not affect the results of the study.

Deviation

The protocol states (section 8.5.1) that: "The blood samples will be maintained at room temperature until analyzed." They were maintained on ice until placed in the headspace autosampler for analysis.

Reason for Deviation

Oversight. The storage conditions to be investigated and found to maintain ETBE concentrations were noted in section 8.6: "This will include analysis of ETBE immediately after spiking in control blood, after storage at room temperature (8 hr), or at approximately 4°C (24 hr)." ETBE in blood under all conditions tested was found to be stable.

Deviation

The protocol states (section 7.1.5) that:

"Following administration of ETBE, the animals will be placed in the hood for the duration of the postdosing period." Group C animals dosed the previous night were transferred out of the hood in the morning on 6/21/07 prior to collection of the 24 hr blood collection in order to allow placement of Group D Animals in the hood following dosing of the animals.

Reason for Deviation

Sample analysis results indicate that Group C animals are no longer exhaling ETBE in amounts (above the assay limit of quantitation) which may cross-contaminate other study samples or expose study personnel to ETBE. This also affords dosing of Group D animals earlier in the morning.

Deviation

The protocol states (section 10.0) that:

"The statistical analysis to be used will be added by amendment" The following staticial analysis will be performed. Statistical comparison of the parameters Tmax, Cmax, t1/2 Lambda z, Lambda z, AUCall, AUCobserved and AUCobserved/Dose will be conducted using the Student's t-test available in SAS® Version 9 (SAS Institute Inc., 2004, 2005, 2006a,b). The males will be compared to the females within dose group for each parameter. Additionally, for the parameter AUCobserved/Dose the low dose will be compared to the high dose within each sex.

SAS Institute Inc. (2004). SAS/STAT® User's Guide, Version 9.1, Cary, NC: 5136 pp. SAS Institute Inc. (2005). SAS® Language Reference: Concepts, Version 9.1.3, Cary, NC: 664 pp. SAS Institute Inc. (2006a). SAS® Language Reference: Dictionary, Version 9.1.3, Cary, NC: 1908 pp. SAS Institute Inc. (2006b). SAS® Procedures Guide, Version 9.1.3, Cary, NC: 1934 pp.

Reason for Deviation

To expedite statistical analysis, the proposed statistical analysis was agreed with the sponsor.

Deviation

At the following time points for the respective animals, blood was collected from the tail vein instead of the cannula.

8h (AM01, BF03, DF05),

24h (AM01, AM02, AM03, AM04, BF03, BF04, DF02) 15m (DF05), 30m (DF05), 4h (BF03)

Reason for Deviation

Cannulae failed in all cases. For the earlier timepoints, a sufficient number of extra animals were not available to complete the study by dosing additional animals. For 8-24h timepoints, tail vein bleeds were considered an appropriate method of blood collection in the absence of a patent cannula, and a complete time course to 24h was desired.

Deviation

Periodic stability analyses of the ETBE test substance were conducted via Gas Chromatography with Flame Ionization Detection (GC-FID) instead of GC-MS, and Proton-NMR was not used.

Reason for Deviation

The GC-MS was in constant use during method validations and study sample analyses during this study. GC-FID was considered an appropriate alternative and provided a quantitative method for assessing purity.

Deviation

Group A animals were released from quarantine on the same day of receipt.

Reason for Deviation

Animals were not available from the vendor on a prior day to allow for one day between receipt and and release from quarantine. The animals were administered ETBE the day following release.

Deviation

Dose formulations were stored in a refrigerator at ca. five degrees Celcius overnight between preparation and analysis. The protocol stated room temperature.

Reason for Deviation

The test substance is very volatile, and a lower temperature was considered prudent to provide additional assurance that ETBE remained in the formulation between preparation and dosing. Both room temperature and refrigerator temperature had been evaluated and both were acceptable.

Appendix B

Test Chemical Analysis Report

Ethyl Tertiary Butyl Ether

RTI Reference 12307-11

SUBMITTED TO:

Section 211(b) Research Group American Petroleum Institute 1220 L Street NW Washington, DC 20005

TESTING FACILITY:

RTI International* 3040 Cornwallis Road P.O. Box 12194 Research Triangle Park, NC 27709-2194

Lund John C hur

Timothy R. Fennell, Ph.D.

03-04-2013 Date

tert- Butyl Ethyl Ether RTI Reference 12307-11

Two x 5g of tert-Butyl ethyl ether (ETBE) was purchased from Sigma Aldrich. The material received on March, 9, 2006 was 99% tert-Butyl ethyl ether, Product Number 253898, Lot Number 04608LD, Formula Weight 102.17. Purity from the Vendor Certificate of Analysis was 99.3% by GLC. No expiration date was indicated by the vendor.

RTI assigned this material a Test Article Number of 12307-11. RTI confirmed the identity of the material using nuclear magnetic resonance spectroscopy, and mass spectrometry. RTI confirmed the purity of the material by gas chromatography.

Nuclear Magnetic Resonance Spectroscopy.

All NMR data were acquired on a 300 MHz Bruker spectrometer. The ¹H NMR spectra were acquired with a relaxation delay of 30 sec, a 6173 Hz sweep width, and an 8 µsec pulse. The sample was prepared in CDCl₃ (deuterochloroform). The ¹H-decoupled ¹³C NMR spectrum was acquired with a relaxation delay of 2 sec, a sweep width of 23810 Hz, and a 5.5 µsec pulse. The NMR analysis was conducted on 03/17/06.

The ¹H NMR spectrum of the sample contained an overlapping singlet and triplet at approximately 1.2 ppm, and a quartet at 3.4 ppm (Figure 1). The singlet at 1.2 ppm is attributed to the CH₃ groups of tertiary butyl portion of the molecule. The overlapping triplet at 1.2 ppm is attributed to the ethyl CH₃ group. The quartet at 3.4 ppm is attributed to the ethyl CH₂ group. The ratio of integrals (12.485:2.000) is consistent with the expected ratio for 12 methyl protons, and 2 methylene protons.

The ¹³C NMR spectrum of the sample contained singlets at approximately 72.9, 57.2, 28.0 ppm and 16.7 ppm (Figure 2). The triplet at approximately 77.0 ppm is assigned to CDCI₃. The large signal at 22.8 ppm is consistent with the tertiary butyl CH₃ groups, and the small singlet at 72.9 ppm is consistent with the quaternary carbon of the tertiary butyl group. The signal at 57.2 ppm is consistent with the ethyl CH₂ group, and the singlet at 16.7 ppm is consistent with the the ethyl CH₃ group.

The ¹H and ¹³C NMR data for the sample are consistent with the structure of ETBE.

Page 2 of 11

tert- Butyl Ethyl Ether RTI Reference 12307-11

GC Analysis

Analysis of the supplied material was conducted as described below on March 10 and May 16, 2006.

Equipment: Agilent 6890 gas chromatograph equipped with a split-splitless injector and a flame ionization detector. Agilent 6890 autoinjector with controller Millenium data system.

Column DB-1, J&W Scientific 30m x 0.53 mm i.d., 3 µm film thickness (J&W, Agilent Technologies, Wilmington, DE)

Injection port	split/splitless
Temperature	200 °C
Split ratio	100:1
Carrier gas	Helium
Flow rate	1 ml/min
Injection volume	1 μl
Initial temperature	35 ℃
Initial time	1 min
Temperature rate	5 ℃/min
Final temperature	220 ℃
Final time	1 min

From August 22, 2006, analyses were conducted as described above with the following exceptions:

Split ratio	50:1
Flow rate	4 ml/min
Temperature rate	10 ºC/min
Final time	2 min

Empower 2 has replaced Waters Millenium 32 Version 4.0 as the chromatography data system used for the analyses since March 7, 2007.

Purity of the material was determined by injection of 3 1- μ l samples onto the GC column with the exception that injection of 3 3- μ l samples for analyses on June 7, 2007. The initial purity determined was 99.66 %, with a standard deviation of 0.04 %. Figure 3 shows a typical chromatogram. The purity of the material measured on subsequent dates is presented in Table 1.

Page 3 of 11

tert- Butyl Ethyl Ether RTI Reference 12307-11

GC-MS analysis

Solvent delay

Analysis of the supplied material was conducted as described below on March 10, 2006.

Equipment: Agilent 6890 gas chromatograph equipped with a split-splitless injector and a flame ionization detector. Agilent 5973 Mass Selective Detector.

Column DB-624 30m x 0.32 mm i.d., 1.8 µm film thickness (J&W, Agilent Technologies, Wilmington, DE)

Injection port	split/splitless
Temperature	150 °C
Split ratio	5:1
Carrier gas	Helium
Flow rate	1.7 ml/min
Injection volume	1 μl
Initial temperature	30 °C
Initial time	3 min
Temperature rate	5 °C/min
Final temperature	80 °C
Final time	0
Ramp	100 °C/min
Final temperature	200 °C
Final time	1 min
5973 MSD Mode Scan Source temperature Quad temperature Transfer line Tune	El mode 10-150 amu 230 °C 150 °C 250 °C Atune.u

Identity was verified by GC-MS analysis. A sample of 10 μ I ETBE was dissolved in 20 ml of methanol, and 1 μ I was injected.

2.75 min

The total ion chromatogram showed a single peak at approximately 4.6 min (Figure 4, upper panel). The mass spectrum of this peak (Figure 4, lower panel) showed a base peak at m/z 87 (consistent with M-CH₃), and major fragment ions

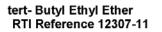
Page 4 of 11

tert- Butyl Ethyl Ether RTI Reference 12307-11

at 59, 57, and 45 (consistent with CH_3 - $CH=OH^+$). A library search indicated a match with the spectrum of tert-butyl ethyl ether.

Conclusion

The NMR and mass spectral data of the supplied material are consistent with the structure of ETBE. The initial purity of the material measured by GC with FID on March 10, 2006 was 99.66 \pm 0.04 %. Measurement of purity between March 2006 and June 2007 (99.26 \pm 0.17 %) indicated that the material is stable under the conditions of storage at RTI.


Page 5 of 11

tert- Butyl Ethyl Ether RTI Reference 12307-11

Table 1. Purity of ETBE determined by gas chromatography with flame ionization detection.

Date of Analysis	Purity (Mean \pm SD, 3 determinations)
March 10, 2006	99.66 ± 0.04
May 16, 2006	99.88 ± 0.07
August 22, 2006	99.14 ± 0.06
November 29, 2006	99.11 ± 0.04
March 7, 2007	99.17 ± 0.02
June 7, 2007	99.31± 0.05
June 21, 2007	99.26 ± 0.17

Page 6 of 11

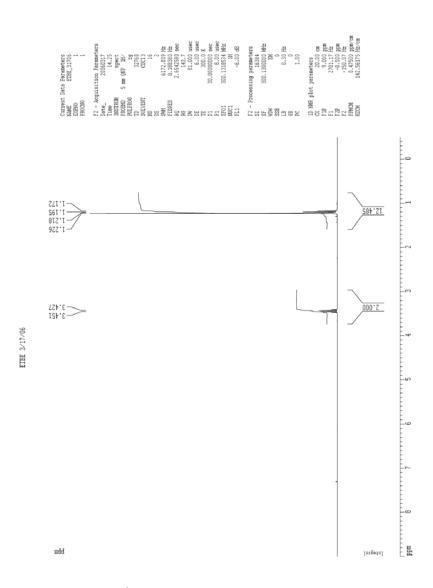


Figure 1. 300 MHz $^1\mathrm{H}$ NMR of Vendor Supplied ETBE, analyzed on 3/17/06 by J. Burgess

Page 7 of 11

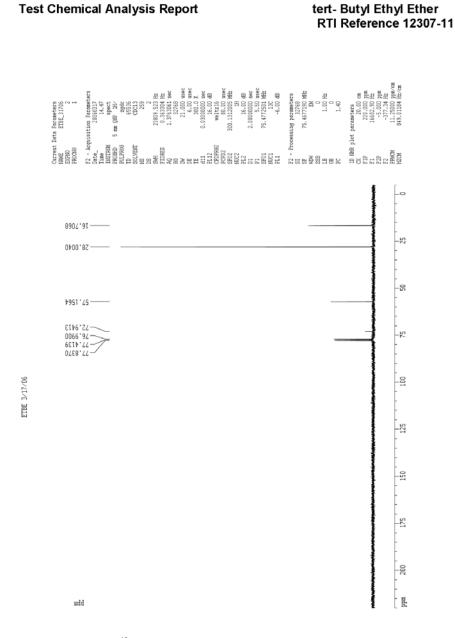


Figure 2. 75 MHz ^{13}C NMR of Vendor Supplied ETBE, analyzed on 3/17/06 by J. Burgess

Page 8 of 11

tert- Butyl Ethyl Ether RTI Reference 12307-11

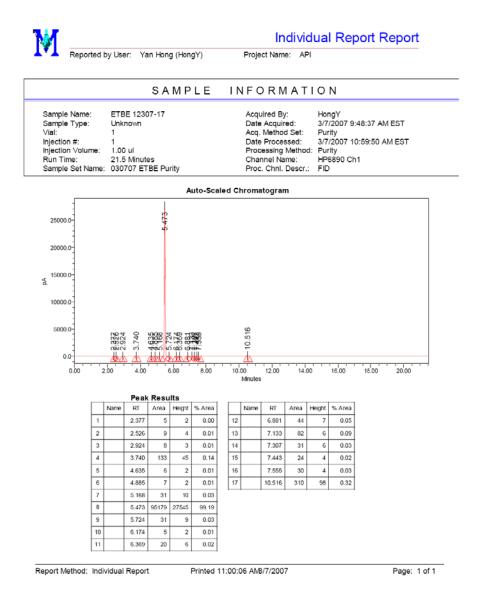
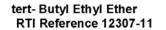
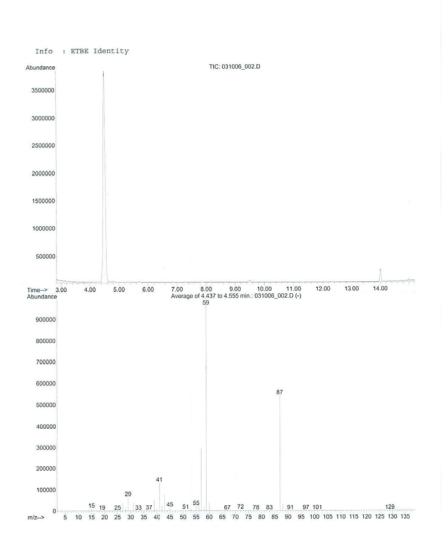
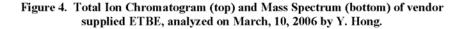
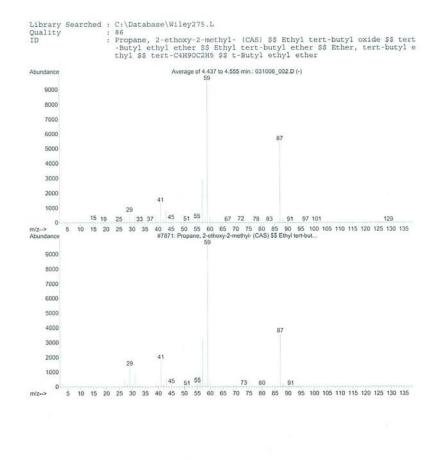
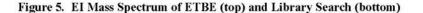





Figure 3. GC-FID Chromatogram of ETBE, analyzed on March, 7, 2007 by Y. Hong.

Page 9 of 11





Page 10 of 11

tert- Butyl Ethyl Ether RTI Reference 12307-11

Page 11 of 11

Appendix C

Method Validation Plan

Analytical Method

Validation Report

Method Validation Report

Analysis of Ethyl Tertiary Butyl Ether in Blood Samples

SPONSOR: Section 211(b) Research Group American Petroleum Institute 1220 L Street NW Washington, DC 20005

TEST SITE: RTI International* Post Office Box 12194 Research Triangle Park, NC 27709

RTI PROTOCOL NO: RTI-932

RTI PROJECT NO.: 0209408.007

PRINCIPAL INVESTIGATOR: Timothy R. Fennell

SIGNATURES:

Author:

1/12/2015 idette Norman F. Gaudette, Jr.

Research Chemist

*RTI International is a trade name of Research Triangle Institute.

Approval:

ennell 1/12/2015 Date Timothy R. Fennell, Ph.D

Principal Investigator, RTI

Page 1 of 45

Protocol No. RTI-932

Method Validation Report

SUMMARY

The analytical method titled Project Specific Method for Analysis of Ethyl tertiary Butyl Ether in Blood Samples (AM-0209408.007) was validated in preparation for analyses of blood samples in order to determine concentrations of Ethyl tertiary butyl ether (ETBE) present in the matrix following an oral exposure study. This validation established a Limit of Quantitation (LOQ), accuracy, and precision of the method. The method consists of GC/MS analysis of ETBE using mass-selective detector with injection of headspace from sample vials.

The validation procedure established a calibration range of 0.110 μ g/ml to 250 μ g/ml for analysis of ETBE in the headspace of blood samples using two calibration curves. The low-concentration curve was defined by a linear regression (y=bx+a) of slope 0.08065, intercept -0.0006558, and linear correlation coefficient of 0.9998. The high-concentration curve was defined by the linear regression (y=bx+a) of slope 0.96736, intercept -0.1292, and linear correlation coefficient of 0.9994. Using the regression equation, calculated concentrations for all calibration standards were within the acceptance criteria of ± 15% (20% for the LOQ) of the nominal concentrations. Mean calculated concentrations for the replicate concentration points assayed at 0.540 μ g/ml, 5.06 μ g/ml, and 101 μ g/ml for determination of precision and accuracy ranged from 96.2% to 99.3% of nominal concentration. Precision around the mean for each of these replicate concentration points was calculated to be well within the acceptance criteria of 15% CV. Additionally, the mean values for each concentration were well within the acceptance criteria of 15% deviation from nominal concentration.

Page 2 of 45

Protocol No. RTI-932

Method Validation Report

Table of Contents

	Pa	age
1.0	INTRODUCTION	4
2.0	ETHYL TERTIARY BUTYL ETHER TEST SUBSTANCE (ETBE)	5
3.0	REAGENTS AND CHEMICALS	5
4.0	ETBE STOCK SOLUTIONS	6
5.0	INTERNAL STANDARD SOLUTION	6
6.0	PREPARATION OF CALIBRATION STANDARDS AND SAMPLES FOR ANALYSIS	6
6.1	Calibration Spiking Solutions	6
6.2	Calibration Standards	7
6.3	LOQ, Accuracy, and Precision	8
7.0	STABILITY STUDIES	9
7.1	Stability in Solution	9
7.2	Stability in Blood	9
8.0	STANDARD/SAMPLE LIST	9
9.0	GC/MS ANALYSIS OF SAMPLE AND STANDARDS	. 12
10.0	CALCULATIONS	. 14
11.0	VALIDATION RESULTS AND DISCUSSION	. 14
11.1	Calibration Curve	. 14
11.2	Limit of Quantitation	. 14
11.3	Accuracy and Precision	. 15
11.4	Stability in Blood	. 15
11.5	Stability in Solutions	. 15
12.0	REFERENCES	. 16

Page 3 of 45

Protocol No. RTI-932

Method Validation Report

1.0 INTRODUCTION

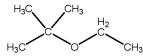
The analytical method titled Project Specific Method for Analysis of Ethyl tertiary Butyl Ether in Blood Samples (AM-0209408.007) was validated in preparation for analyses of blood samples in order to determine concentrations of Ethyl tertiary butyl ether (ETBE) present in the matrix following an oral exposure study (Ethyl Tertiary Butyl Ether Oral Absorption in Male and Female Rats, Study Protocol, RTI Protocol RTI 932). This validation established a Limit of Quantitation (LOQ), accuracy, and precision for the method and its calibration range. The method utilizes GC/MS analysis of headspace from vials containing the blood samples with mass-selective detection. Procedures conducted in the validation included preparation of calibration standards, analysis of standards and samples, regression analysis, comparison to acceptance criteria, and sample concentration calculation. This validation was conducted with a Validation Plan (Ethyl Tertiary Butyl Ether Bioanalytical Method Validation, RTI Validation Plan). Criteria for acceptance of the validation (US Food and Drug Administration, 2001) were specified in the Validation Plan, and they are summarized in Table 1 below.

Item	Acceptance Criteria
Accuracy	Acceptance Criteria
Limit of Quantitation (LLOQ)	± 20% of Nominal
Low Conc. (above the LLOQ).	± 15% of Nominal
Middle Conc.	± 15% of Nominal
High Conc.	± 15% of Nominal
Precision	
Limit of Quantitation (LLOQ)	± 20%
Low Conc (above LLOQ)	± 15 % CV
Middle Conc:	± 15 % CV
High Conc.	± 15 % CV
Calibration Curve	
Linear Correlation Coefficient (r)	≥ 0.990

Table 1: Method Validation Acceptance Criteria

Page 4 of 45

Protocol No. RTI-932


Method Validation Report

2.0 ETHYL TERTIARY BUTYL ETHER TEST SUBSTANCE (ETBE)

The ETBE test substance was utilized as the analytical standard for preparation of calibration standards.

NAME: Ethyl tertiary Butyl Ether (ETBE; tertiary butyl ethyl ether, 2-ethoxy-2-methylpropane)

CAS No.: 637-92-3 MOLECULAR FORMULA: C₆H₁₄O MOLECULAR WEIGHT: 102.17 STRUCTURE:

SOURCE OF TEST SUBSTANCE: ETBE was purchased from Sigma-Aldrich, Milwaukee, WI (Catalog number 253898, specified purity 99%). A certificate of analysis was obtained from the vendor.

LOT NUMBER(S): 04608LD IDENTITY AND PURITY: The identity of the unlabeled ETBE was confirmed at RTI by ¹H and ¹³C NMR, and by mass spectrometry. The purity of the test chemical was determined by GC. Results of purity and identity determinations were previously reported to the sponsor in a separate report prior to initiation of the validation.

STORAGE CONDITIONS: ETBE was stored in the dark at room temperature.

3.0 REAGENTS AND CHEMICALS

<u>Ethyl tertiary Butyl Ether (ETBE):</u> 04608LD_99% purity, Sigma-Aldrich, St. Louis, MO. This test substance lot was used for preparation of all standards and QC samples. See Section 2.0 for a detailed description of the ETBE test article.

<u>Methyl tertiary Butyl Ether (MTBE):</u> Batch 02047CC, 99.9%, HPLC, Sigma-Aldrich, St. Louis, MO. This compound serves as the internal standard.

<u>N. N-Dimethylformamide (DMF): Batch 01045AD, 99.8%</u>, A.C.S reagent, Sigma-Aldrich, St. Louis, MO

Distilled/Deionized (D/I) water

Helium: 99.996% purity, obtained from National Welders, Durham NC.

Page 5 of 45

Protocol No. RTI-932

Method Validation Report

<u>Blank Rat Blood:</u> Obtained from male Fischer 344 rats via cardiac puncture using syringes coated with sodium heparin.

4.0 ETBE STOCK SOLUTIONS

Two ETBE stock solutions were prepared at $25110 \ \mu$ g/ml (Stock A) and $25260 \ \mu$ g/ml (Stock B) in dimethylformamide. Use of two stock solutions to prepare separate calibration points was intended to provide additional evidence of the method's accuracy. Alternating the use of these stocks for preparation of adjacent calibration standards demonstrated accuracy through quality of the linear regression. The stock solutions were stored at approximately -20 °C.

The ETBE stock solutions were prepared by weighing DMF and ETBE in a 10 ml volumetric flask containing dimethylformamide. Just prior to addition of ETBE, a volume of DMF equivalent to the volume of ETBE about to be added was removed from the flask. ETBE was then added to the flask recording the mass added to the flask. Flask contents were then mixed by hand and immediately cooled in ice.

5.0 INTERNAL STANDARD SOLUTION

An internal standard solution of 50 μ g/ml MTBE was prepared by dilution from a 1250 μ g/ml stock solution. The stock solution was prepared by weighing 16 μ l of MTBE into a 10-ml volumetric flask filled with distilled/deionized water. Prior to adding MTBE, an equivalent volume of distilled/deionized water was removed from the flask. Aliquots of the internal standard solution were sealed in separate vials ensuring a fresh unopened aliquot was used for preparing each set of standards or samples. The internal standard solution aliquots were stored at approximately -20 °C.

6.0 PREPARATION OF CALIBRATION STANDARDS AND SAMPLES FOR ANALYSIS

6.1 Calibration Spiking Solutions

Eleven calibration spiking solutions encompassing the concentration range of 1 and 2500 µg/ml were prepared for use in producing calibration standards (Table 2). Adjacent spiking standard concentrations were prepared using different stock solutions. Weights of water added to the solution and total solution weight were recorded. Dilution factors for each spiking standard solution were calculated by dividing the weight of added spiking standard solution by the total weight of solution. The density of DMF was used to calculate the volume of stock solution added, which is divided into the total weight of solution for dilution factor. Aliquots of each calibration spiking solution were removed and stored at approximately -20 °C for use in preparation of separate sets of calibration standards and samples.

Page 6 of 45

Protocol No. RTI-932

Method Validation Report

Table 2

Calibration Spiking Solution Preparation

Spiking Standard Solution	Water (g)	Stock or Spiking Solution Used	Total Solution Weight (g)	Dilution Factor	Solution Concentration (µg/ml)
Spk. Std. A6	3.3037	Stock A	3.6459	0.0994	2497
Spk. Std. B5	3.5381	Stock B	3.6763	0.0398	1006
Spk. Std. A5 (HQC)	2.9509	Spk. Std. A6	3.6925	0.201	501
Spk. Std. B4	2.9357	Spk. Std. B5	3.9102	0.249	251
Spk. Std. A4	2.8996	Spk. Std. A5	3.6459	0.205	103
Spk. Std. B3 (MQC)	2.8896	Spk. Std. B4	3.6203	0.202	50.6
Spk. Std. A3	2.8800	Spk. Std. A4	3.8641	0.255	26.1
Spk. Std. B2	2.8852	Spk. Std. B3	3.6215	0.203	10.3
Spk. Std. A2 (LQC)	2.8214	Spk. Std. A3	3.5566	0.207	5.40
Spk. Std. B1	2.9262	Spk. Std. B2	3.9091	0.251	2.59
Spk. Std. A1 (LLQC)	2.8896	Spk. Std. A2	3.6250	0.203	1.10

6.2 Calibration Standards

Calibration standards were prepared in headspace vials at eleven ETBE concentrations using the calibration spiking solutions, blank Fischer 344 rat blood, and the 50 µg/ml MTBE internal standard solution. Three replicates were prepared at each concentration level for generation of the standard curves. In addition to the eleven ETBE standards concentrations, three blank blood samples (no internal standard), and six blank blood samples with internal standard were prepared. Table 3 details the composition of all blanks and standard concentrations.

Page 7 of 45

Protocol No. RTI-932

Method Validation Report

Table 3.

Calibration Standard and QC Sample Components

Standard or QC Sample ID	ETBE Concentration (µg/ml)	Blank Blood (μl)	Spiking Solution Used	Spiking Solution Aliquot Volume (µl)	Volume Internal Standard Solution (بلا)
Blood Blank	0	100	n/a	0	0
ISTD Blank	0	100	n/a	0	10
Std A1 (LLQC)	0.110	90	A1	10	10
Std B1	0.259	90	B1	10	10
Std A2 (LQC)	0.540	90	A2	10	10
Std B2	1.03	90	B2	10	10
Std A3	2.61	90	A3	10	10
Std B3 (MQC)	5.06	90	В3	10	10
Std A4	10.3	90	A4	10	10
Std B4	25.1	90	B4	10	10
Std A5	50.1	90	A5	10	10
Std B5 (HQC)	101	90	B5	10	10
Std A6	250	90	A6	10	10

6.3 LOQ, Accuracy, and Precision

Three additional replicate samples were prepared at each of the 0.540 μ g/ml (LQC), 5.06 μ g/ml (MQC) and 101 μ g/ml (HQC) concentrations for use in accuracy and precision determinations in addition to the three samples prepared for use as calibration standards. Three additional replicate samples were

Page 8 of 45

RTI Project No.: 0209408.007 Protocol No. RTI-932

Method Validation Report

also prepared at the 0.110 μ g/ml (LLQC)) concentration for use in establishing the Lower Limit of Quantitation (LLOQ) also referred to as the LOQ.

7.0 STABILITY STUDIES

7.1 Stability in Solution

Concentration stability of ETBE spiking solutions was investigated over a seven day period at -20 °C. The two spiking solutions used to prepare the HQC and LQC calibration standards were prepared and stored at approximately -20 °C for seven days prior to analysis. At the analysis timepoint, three aliquots of the two spiking solutions were transferred to separate headspace autosampler vials. Aliquots (10 μ I) of the 50 μ g/ml of the internal standard solution were then added to each vial prior to analysis.

7.2 Stability in Blood

The stability of ETBE in blood samples was tested under sample storage conditions expected to be utilized during the animal studies. During the studies, samples are expected to be analyzed within 24 h following collection. Four sets of blank blood samples were prepared. Each set consisted of three samples at two blood concentrations: 0.540 µg/ml (LQC) and HQC 101 µg/ml (HQC). One set was analyzed immediately following preparation. The second set was stored for 8 hours at room temperature prior to analysis. The third and fourth sets were stored in refrigerator temperatures at approximately 4 °C for 16 h and 24 h, respectively.

8.0 STANDARD/SAMPLE LIST

The following table (Table 4) details the list of samples/standards prepared and analyzed during conduct of the validation.

Page 9 of 45

Protocol No. RTI-932

Method Validation Report

Table 4: Standard and Sample Analysis List ¹

Standard/Sample	Replicate Number	ETBE Concentration (µg/ml)	Purpose ²	
Blank Blood	1	-	Blank	
Blank Blood	2	-	Blank	
Blank Blood	3	-	Blank	
Blank Blood + IS	1	-	Blank	
Blank Blood + IS	2	-	Blank	
Blank Blood + IS	3	-	Blank	
Blank Blood + IS	4		Blank	
Blank Blood + IS	5	-	Blank	
Blank Blood + IS	6	-	Blank	
Blank Blood + IS	7		Blank	
Std A1	1	0.110	Calib Std, LLOQ	
Std A1	2	0.110	Calib Std, LLOQ	
Std A1	3	0.110	Calib Std, LLOQ	
Std A1	4	0.110	Calib Std, LLOQ	
Std A1	5	0.110	Calib Std, LLOQ	
Std A1	6	0.110	Calib Std, LLOQ	
Std B1	1	0.259	Calib Std	
Std B1	2	0.259	Calib Std	
Std B1	3	0.259	Calib Std	
Std A2	1	0.540	Calib Std, P + A	
Std A2	2	0.540	Calib Std, P + A	
Std A2	3	0.540	Calib Std, P + A	
Std A2	4	0.540	Calib Std, P + A	
Std A2	5	0.540	Calib Std, P + A	
Std A2	6	0.540	Calib Std, P + A	
Std B2	1	1.03	Calib Std	
Std B2	2	1.03	Calib Std	
Std B2	3	1.03	Calib Std	
Std A3	1	2.61	Calib Std	
Std A3	2	2.61	Calib Std	
Std A3	3	2.61	Calib Std	
Std B3	1	5.06	Calib Std, P+A	
Std B3	2	5.06	Calib Std, P + A	
Std B3	3	5.06	Calib Std, P + A	
Std B3	4	5.06	Calib Std, P + A	
Std B3	5	5.06	Calib Std, P + A	
Std B3	6	5.06	Calib Std, P + A.	

 1 Note: Order in the table does not indicate order of analysis in the sample set. 2 P + A = Precision and Accuracy, Calib Std = Calibration Standard

Page 10 of 45

Protocol No. RTI-932

Method Validation Report

Table 4 (Continued): Sample/Standard Analysis List ¹

Standard/Sample	Replicate Number	ETBE Concentration (µg/ml)	Purpose ²
Std A4	1	10.3	Calib Std
Std A4	2	10.3	Calib Std
Std A4	3	10.3	Calib Std
Std B4	1	25.1	Calib Std
Std B4	2	25.1	Calib Std
Std B4	3	25.1	Calib Std
Std A4	1	10.3	Calib Std
Std A5	1	50.1	Calib Std
Std A5	2	50.1	Calib Std
Std A5	3	50.1	Calib Std
Std B5	1	101	Calib Std, P + A
Std B5	2	101	Calib Std, P + A
Std B5	3	101	Calib Std, P + A
Std B5	4	101	Calib Std, P + A
Std B5	5	101	Calib Std, P + A
Std B5	6	101	Calib Std, P + A
Std A6	1	250	Calib Std
Std A6	2	250	Calib Std
Std A6	3	250	Calib Std
LQC RT 0 h	1	0.540	Stab in Blood
LQC RT 0 h	2	0.540	Stab in Blood
LQC RT 0 h	3	0.540	Stab in Blood
HQC RT 0 h	1	101	Stab in Blood
HQC RT 0 h	2	101	Stab in Blood
HQC RT 0 h	3	101	Stab in Blood
LQC RT 8 h	1	0.540	Stab in Blood
LQC RT 8 h	2	0.540	Stab in Blood
LQC RT 8 h	3	0.540	Stab in Blood
HQC RT 8 h	1	101	Stab in Blood
HQC RT 8 h	2	101	Stab in Blood
HQC RT 8 h	3	101	Stab in Blood
LQC 4 °C 16 h	1	0.540	Stab in Blood
LQC 4 °C 16 h	2	0.540	Stab in Blood
LQC 4 °C 16 h	3	0.540	Stab in Blood
HQC 4 °C 16 h	1	101	Stab in Blood
HQC 4 °C 16 h	2	101	Stab in Blood
HQC 4 °C 16 h	3	101	Stab in Blood

 1 Note: Order in the table does not indicate order of analysis in the sample set. 2 P + A = Precision and Accuracy, Calib Std = Calibration Standard, Stab in Blood = Stability in Blood

Page 11 of 45

Protocol No. RTI-932

Method Validation Report

Table 4 (Continued): Sample/Standard Analysis List ¹

Standard/Sample	Replicate Number	ETBE Concentration (µg/ml)	Purpose ²
LQC 4 °C 24 h	1	0.540	Stab in Blood
LQC 4 °C 24 h	2	0.540	Stab in Blood
LQC 4 °C 24 h	3	0.540	Stab in Blood
HQC 4 °C 24 h	1	101	Stab in Blood
HQC 4 °C 24 h	2	101	Stab in Blood
HQC 4 °C 24 h	3	101	Stab in Blood
Spk LQC (0 days)	1	5.40	Spike Sol Stab
Spk LQC (0 days)	2	5.40	Spike Sol Stab
Spk LQC (0 days)	3	5.40	Spike Sol Stab
Spk MQC (0 days)	1	50.6	Spike Sol Stab
Spk MQC (0 days)	2	50.6	Spike Sol Stab
Spk MQC (0 days)	3	50.6	Spike Sol Stab
Spk LQC (7 days)	1	5.40	Spike Sol Stab
Spk LQC (7 days)	2	5.40	Spike Sol Stab
Spk LQC (7 days)	3	5.40	Spike Sol Stab
Spk MQC (7 days)	1	50.6	Spike Sol Stab
Spk MQC (7 days)	2	50.6	Spike Sol Stab
Spk MQC (7 days)	3	50.6	Spike Sol Stab

Note: Order in the table does not indicate order of analysis in the sample set.

² Stab in Blood = Stability in Blood, Spike Sol Stab = Spike Solution Stability.

9.0 GC/MS ANALYSIS OF SAMPLE AND STANDARDS

Samples and standards were assayed using an Agilent Model 6890 gas chromatograph fitted with an Agilent Model 5973 Mass Selective Detector. Samples of air from the headspace of sample vials were introduced into the gas chromatograph using an Agilent Model G1888A headspace autosampler. Data acquisition and instrument control was performed by Agilent MSD Security Chemstation Software Version A.02.01 (Agilent technologies, Wilmington, DE). Instrumental operating parameters and other analysis parameters are detailed in Table 5. A representative chromatogram, shown in Figure 1, contain selected ion chromatograms for m/z 87 (ETBE) and m/z 73 (MTBE).

Page 12 of 45

Project No.: 0209408.007	Protocol No. RTI-932	Method Validation Report
	Table 5: Instrument Parameters	
<u>6890 GC</u>		
Injection method	split/splitless	
Temperature	150 °C	
Split ratio	15:1 (calculated by adding flow rate of HSS)	
Carrier gas	Helium	
Flow rate	1.7 ml/min	
Column	DB-624 30m x 0.32 mm i.d. 1.8 μ m film thickness	
	(J&W, Agilent technologies, Wilmington, DE)	
GC oven program		
Initial temperature	40 °C	
Initial time	2 min	
Temperature program rate	5 °C/min	
Final temperature	50 ℃	
Final time	0 min	
Temperature rate A	50 °C/min	
Final temperature A	150 °C	
Final time A	0 min	
Run time	6 min	
G1888A headspace sampler		
Loop size	1 m <u>l</u>	
Vial Pressure	15 psig	
Carrier Pressure	2.8 psig	
Headspace oven	65 °C	
loop temperature	90 °C	
Transfer line temperature	110 °C	
Equilibration time	10 min	
GC cycle time	10 min	
Pressurization	0.2 min	
Loop Fill	0.2 min	
Loop Equilibration	0.05 min	
Inject	0.5 min	
Shake	low	
<u>5973 MSD</u>		
Scan	El mode	
SIM	ETBE (m/z) 87; MTBE (m/z 73)	
Source temperature	230 °C	
Quad temperature	150 °C	
Transfer line	230 °C	
Tune	Atune.u	
Solvent delay	3.0 min	
Timed detector off	6.0 min	

Page 13 of 45

Protocol No. RTI-932

Method Validation Report

10.0 CALCULATIONS

Peak areas for ETBE and the MTBE internal standard were used to calculate the internal standard ratio. For each chromatographic run, the internal standard ratio was computed using the following equation:

Internal Standard Ratio = $\frac{\text{ETBE Peak Area}}{\text{Internal Standard Peak Area}}$

Resulting concentration and internal standard ratios for all calibration standards were input into the curve fitting software TableCurve 2D for Windows (Version 2.04, Systat Software Inc., Richmond Ca) for calculation of the linear regression coefficients. Regression coefficients of slope and intercept were then used to quantitate ETBE in all standards and samples.

11.0 VALIDATION RESULTS AND DISCUSSION

11.1 Calibration Curve

Two calibration curves were constructed to encompass the entire standard concentration range. The low concentration curve included standards from 0.110 μ g/ml to 5.06 μ g/ml ETBE (Table 6 and Figure 2). The high concentration curve encompassed standard concentrations from 5.06 μ g/ml to 101 μ g/ml ETBE (Table 7 and Figure 2). Both curves were weighted by a factor of 1/x in order to provide accuracy at the lower end of each calibration range. Calculation of linear (least squares) regression generated a slope of 0.08065 and intercept value of -0.0006558 for the low curve. The linear correlation coefficient (r) for the low concentration curve was 0.9998. Slope and intercept values were 0.09673 and -0.1292, respectively for the high concentration curve. The linear correlation coefficient (r) was 0.9994 for the high curve. Correlation coefficients resulting from both curves exceeded the minimum acceptance criterion of 0.990.

Concentrations of the individual calibration standards were then calculated using the respective regression equations. Resulting concentrations (Table 6) were within ±15% of the nominal values. The method validation plan included this limit for acceptance of the calibration curves. Therefore, the standard curves constructed by the analytical method met both criteria stated for acceptance in the validation plan.

11.2 Limit of Quantitation

Results of six analyses of standards at the 0.110 μ g/ml ETBE concentration yielded a mean concentration of 0.115 μ g/ml ETBE. The mean value was within ± 20% of nominal concentration stated in the validation plan for acceptance. The individual concentration determinations for each replicate varied

Page 14 of 45

RTI Project No.: 0209408.007 Protocol No. RTI-932 Method Validation Report

around the mean by 1.54% (%CV). The precision around the mean was also within the \pm 20% CV criterion specified in the validation plan. Therefore, this standard concentration met criteria in the validation plan for establishing it as the limit of quantitation.

11.3 Accuracy and Precision

Determination of precision and accuracy utilized results obtained from analyses of six standards at each of three ETBE concentrations: 0.540 μ g/ml, 5.06 μ g/ml, and 101 μ g/ml. Table 8 details assay results and precision and accuracy calculation results. The accuracy of the analytical method was defined as the closeness of test results obtained by the method to the nominal values of each standard. The acceptance criterion for accuracy of the method was a mean concentration determination within \pm 15% of the nominal concentration at each of the three standard concentrations. Precision was measured by calculating the Percent Coefficient of Variation (%CV) around the mean for each set of determinations per concentration.

Mean calculated concentrations for the three ETBE standard concentrations were 0.520 μ g/ml, 5.03 μ g/ml, and 98.5 μ g/ml, respectively. These mean concentration results were well within the acceptance criterion of ± 15% of nominal concentration, and correspond to accuracy values of 96.2%, 99.3%, and 101% of the nominal concentrations. Therefore, accuracy of the method was established within the calibration range. An additional measure of accuracy in this validation was provided by linearity of the standard curve. Adjacent calibration concentrations in the curve were prepared from different stock solutions. Therefore, attainment of acceptable calibration curves provided this additional measure.

11.4 Stability in Blood

Mean values resulting from analyses of blood samples of 0.540 µg/ml and 101 µg/ml ETBE concentrations stored at room temperature for 8 h were determined to be 101% and 102% of the initial concentration prior to storage (Table 9). Analysis of blood samples (also 0.540 µg/ml and 101 µg/ml ETBE) following storage at 4 °C for 16 h yielded mean concentrations that were 93.2% and 91.6% of the initial concentration respectively (Table 10). Following storage for 24 h at 4 °C, ETBE concentration was determined to be 87.6% and 90.4% for the two concentrations, respectively. In all cases, measured concentrations were within the \pm 15% of initial concentration acceptance criterion following storage for 8 h at room temperature or at 4 °C for 16 h or 24 h.

11.5 Stability in Solutions

Mean concentrations obtained from analyses of two ETBE spiking solutions stored at -20 °C for seven days were within the acceptance criterion of \pm 15% of original measured concentrations at preparation. Analysis results are reported in Table 11. Mean analysis results for each of the two solutions at preparation were 5.18 µg/ml and 50.0 µg/ml ETBE, respectively. Following storage for seven

Page 15 of 45

days, mean analysis results were 5.20 μ g/ml and 48.3 μ g/ml, respectively. These concentrations were 100% and 96.6% of the initial concentrations prior to storage for the 5.18 μ g/ml and 50.0 μ g/ml solutions, respectively.

12.0 REFERENCES

Ethyl Tertiary Butyl Ether Oral Absorption in Male and Female Rats, Study Protocol, RTI Protocol RTI-932, February 23, 2007.

Ethyl Tertiary Butyl Ether Bioanalytical Method Validation, RTI Validation Plan, April 2, 2007.

Project Specific Analytical Method for Analysis of Ethyl Tertiary Butyl Ether in Blood Samples, Analytical Method, AM-0209408.007, April 2, 2007.

US Food and Drug Administration (2001). Guidance for Industry: Bioanalytical Method Validation.

Page 16 of 45

Protocol No. RTI-932

Method Validation Report

Table 6 Standard Concentration Results (Low Concentration Curve)

Standard	Internal Standard Ratio	Nominal Conc. (µg/ml)	Calculated Conc. (µg/ml)	Accuracy (%)	Mean Calc. Conc. (µg/ml)
Std A1 (LLOQ)	0.00867	0.110	0.116	105	0.116
Std A1 (LLOQ)	0.00869	0.110	0.116	105	
Std A1 (LLOQ)	0.00879	0.110	0.117	106	
Std B1	0.0203	0.259	0.260	100	0.257
Std B1	0.0196	0.259	0.251	96.9	
Std B1	0.0203	0.259	0.260	100	
Std A2	0.0419	0.540	0.528	97.8	0.524
Std A2	0.0416	0.540	0.523	96.9	
Std A2	0.0414	0.540	0.522	96.7	
Std B2	0.0795	1.03	0.994	96.5	1.00
Std B2	0.0801	1.03	1.00	97.2	
Std B2	0.0811	1.03	1.01	98.4	
Std A3	0.205	2.61	2.55	97.7	2.60
Std A3	0.212	2.61	2.63	101	
Std A3	0.211	2.61	2.62	100	
Std B3	0.412	5.06	5.12	101	5.11
Std B3	0.410	5.06	5.09	101	
Std A3	0.411	5.06	5.11	101	

Page 17 of 45

Protocol No. RTI-932

Method Validation Report

Standard	Internal Standard Ratio	Nominal Conc. (µg/ml)	Calculated Conc. (µg/ml)	Accuracy (%)	Mean Calc. Conc. (µg/ml)
Std B3	0.412	5.06	5.60	111	5.59
Std B3	0.410	5.06	5.57	110	
Std B3	0.411	5.06	5.59	110	
Std A4	0.849	10.3	10.1	98.2	9.77
Std A4	0.876	10.3	10.4	101	
Std A4	0.721	10.3	8.79	85.4	
Std B4	2.21	25.1	24.2	96.2	24.3
Std B4	2.26	25.1	24.7	98.6	
Std B4	2.20	25.1	24.1	96.0	
Std B2	4.68	50.1	49.8	99.3	49.4
Std B2	4.64	50.1	49.3	98.4	
Std B2	4.62	50.1	49.1	98.0	
Std A3	9.26	101	97.1	96.5	98.9
Std A3	9.74	101	102	101	
Std A3	9.32	101	97.6	97.1	
Std B3	24.9	250	259	104	254
Std B3	24.6	250	256	102	
Std A3	23.7	250	247	98.8	

Table 7 Standard Concentration Results (High Concentration Curve)

Page 18 of 45

Protocol No. RTI-932

Method Validation Report

Standard	Internal Standard Ratio	Nominal Conc. (µg/ml)	Calculated Conc. (µg/ml)	S.D. (%)	% RSD	Mean Calc. Conc. (µg/ml)	Mean Accuracy (%)
Std A1							
(LLOQ)	0.00867	0.110	0.116	0.00177	1.54	0.115	104
Std A1							
(LLOQ)	0.00869	0.110	0.116				
Std A1							
(LLOQ)	0.00879	0.110	0.117				
LLOQ	0.00844	0.110	0.113				
LLOQ	0.00861	0.110	0.115				
LLOQ	0.00844	0.110	0.113				
Std A2	0.0419	0.540	0.528	0.00725	1.40	0.520	96.2
Std A2	0.0416	0.540	0.523				
Std A2	0.0414	0.540	0.522				
LQC2	0.0402	0.540	0.507				
LQC	0.0410	0.540	0.517				
LQC	0.0413	0.540	0.520				
Std B3	0.412	5.06	5.12	0.220	4.38	5.03	99.3
Std B3	0.410	5.06	5.09				
Std B3	0.411	5.06	5.11				
MQC	0.415	5.06	5.15				
MQC	0.412	5.06	5.12				
MQC	0.369	5.06	4.58				
Std B5	9.26	101	97.1	2.10	2.14	98.5	97.9
Std B5	9.74	101	102				
Std B5	9.32	101	97.6				
HQC	9.45	101	99.0				
HQC	9.46	101	99.1				
HQC	9.15	101	95.9				

Table 8 Precision and Accuracy Results

Page 19 of 45

Protocol No. RTI-932

Method Validation Report

Table 9

Concentration of ETBE in Blood Samples Stored at Room Temperature

Analysis Timepoint	Nominal Conc. (µg/mL)	Measured Conc. (µg/mL)	Mean Measured Conc. (µg/mL)	SD	%CV	Percent of Time 0 Conc. (%)
Time 0	0.540	0.482	0.485	0.0400	0.825	n/a
		0.484				
		0.490				
	101	93.1	94.1	0.923	0.981	n/a
		94.4				
		94.9				
8 h	0.540	0.480	0.492	0.0119	2.43	101
		0.504				
		0.492				
	101	97.2	96.4	0.954	0.99	102
		96.7				
		95.3				

Page 20 of 45

Protocol No. RTI-932

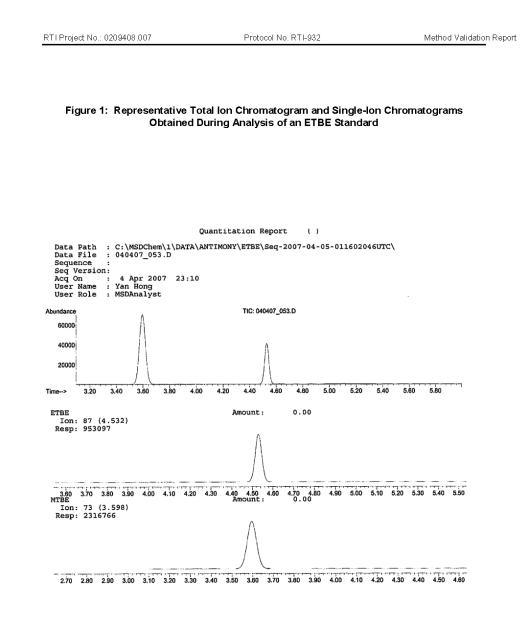
Method Validation Report

Table 10

Concentration of ETBE in Blood Samples Stored at Approximately 4 °C

Analysis Timepoint	Nominal Conc. (µg/mL)	Measured Conc. (µg/mL)	Mean Measured Conc. (µg/mL)	SD	%CV	Percent of Time 0 Conc. (%)
Time 0	0.540	0.482	0.485	0.0400	0.825	n/a
		0.484				
		0.490				
	101	93.1	94.1	0.923	0.981	n/a
		94.4				
		94.9				
16	0.540	0.461	0.452	0.00873	1.93	93.2
		0.452				
		0.444				
	101	84.6	86.3	1.45	1.68	91.6
		87.2				
		87.0				
24	0.540	0.426	0.425	0.00507	1.19	87.6
		0.429				
		0.419				
	101	85.1	85.1	1.57	1.85	90.4
		86.7				
		83.5				

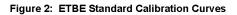
Page 21 of 45

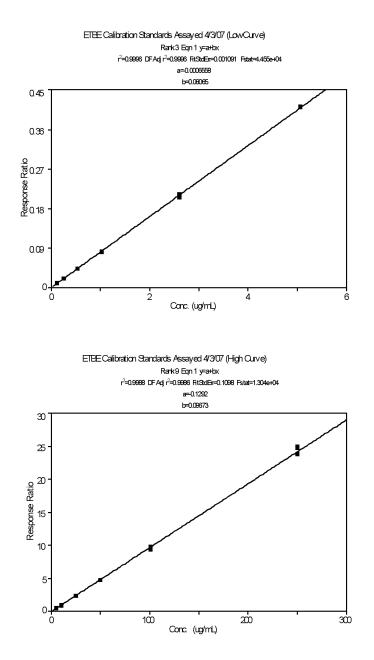

Protocol No. RTI-932

Method Validation Report

Table 11 Concentration of ETBE Calibration Spiking Solutions Stored at Approximately -20 °C

Analysis Timepoint	Nominal Conc. (µg/mL)	Measured Conc. (µg/mL)	Mean Measured Conc. (µg/mL)	SD	%CV	Percent of Day 0 Conc. (%)
Day 0	5.40	5.24	5.18	0.0611	1.18	n/a
		5.17				
		5.12				
	50.6	50.8	50.0	0.917	1.83	n/a
		50.2				
		49.0				
7 Days	540	5.29	5.20	0.0918	1.77	100
		5.11				
		5.19				
	50.6	49.3	48.3	0.891	1.84	96.6
		48.1				
		47.6				


Page 22 of 45



Page 23 of 45

Protocol No. RTI-932

Method Validation Report

Page 24 of 45

Protocol No. RTI-932

Method Validation Report

Appendix 1

Method Validation Plan

Page 25 of 45

Protocol No. RTI-932

Method Validation Report

VALIDATION PLAN	RTI INTERNATIONAL [®] POST OFFICE BOX 121 RESEARCH TRIANGLE							
TITLE: Eth	TITLE: Ethyl tertiary Butyl Ether Bioanalytical Method Validation							
SPONSOR:	Section 211(b) Research Gri American Petroleum Institute 1220 L Street NW Washington, DC 20005							
TESTING FACILITY:	Science and Engineering RTI International* Post Office Box 12194 Research Triangle Park, NC	27709						
RTI PROJECT NO.: RTI STUDY DIRECT	0209408.007 DR: Timothy R. Fennell							
	URES:	04~02_ Date	-07					
		*RTI International is a tradename	of Research Triangle Institute.					

Page 26 of 45

Protocol No. RTI-932

Method Validation Report

	LIDATION PLAN	RTI INTERNATIONAL POST OFFICE BOX 12194 RESEARCH TRIANGLE PARK, NC 27709	Page 2 of 6
Table	of Contents		
Page			
1.0	PRINCIPLES	AND CRITERIA FOR VALIDATION OF ANALYTICAL ME	THOD 3
1.1	Project Speci	fic Analytical Method (PSAM)	3
1.2	LOQ		
1.3	Quality Contr	ol Standards	3
1.4	Accuracy and	Precision	4
1.5	Standard Cur	ve	4
1.6	Stability		5
1.7	Analysis Prep	paration for Validation	6
1.8	Instrument Va	alidation	6

Page 27 of 45

Protocol No. RTI-932

Method Validation Report

VA	LIDATION PLAN	RTI INTERNATIONAL POST OFFICE BOX 12194 RESEARCH TRIANGLE PARK, NC 27709	Page 3 of 6	
1.0	This docume determine the standards, a spectrometry	AND CRITERIA FOR VALIDATION OF ANALYTICAL ME nt details components and acceptance criteria for validati e concentration of Ethyl tert-Butyl Ether (ETBE) in rat blo nd quality control samples will be performed using ga (GC/MS) coupled with headspace sample introduction. sty validated with respect to the accuracy and reliability ults.	THOD ng a method designed to od. Analysis of samples, is chromatography-mass The analysis system has	
1.1	 A detaile written pr Included necessar specified 	ific Analytical Method (PSAM) d project specific analytical method (PSAM) describing the ior to the start of validation. in the PSAM will be a statement of the principle of the ana y reagents, test solutions and mixtures with directions i storage conditions. It will also contain a listing of the ntal parameters and a step-by-step description of the entire	lytical method, a listing of for their preparation and required instrumentation,	
1.2	that can l condition response • Raw date from rat quantitate generate • Accepta as the Lo	n: The limit of quantitation (LOQ) is the lowest concentration determined with acceptable accuracy and precision under s. The response at the LOQ is at least 5 times the response at the LOQ will be established by analyzing at leablood matrix, which is also LLQC, at the lowest concent bod. These replicate samples will consist of three calibrithe lowest curve concentration and an additional three replicate specifications: Two criteria must be met in order to estable. The mean value must be within ±20% of the nomine mean value must not exceed 20% CV.	or the stated experimental sonse compared to blank ast five replicate samples ration in the range to be ration standards used to cate samples. stablish this concentration	
1.3	 Quality Control Standards Definition: A spiked sample used to monitor the performance of a bioanalytical method to assess the integrity and validity of the results of the unknown samples analyzed in an individual batch. 			

Page 28 of 45

Protocol No. RTI-932

Method Validation Report

VALIDATION PLAN		RTI INTERNATIONAL POST OFFICE BOX 12194 RESEARCH TRIANGLE PARK, NC 27709	Page 4 of 6
1.4	 which inc the entire within 3 > standard with a sai Acceptar value. The Accuracy an Definition that metile reproduce Raw date through it known E six replice point, the Acceptar 	n: The accuracy of an analytical method is the closeness mod to the nominal or true value. The Precision is a minimum bility of the analytical method under normal operating circur a required: Determination of accuracy and precision for the range of standard curve, will be accomplished by an IFBE concentration in rat blood. The accuracy and precision ate samples for each sets concentrations. Accuracy and LLQC, will be determined as described in section 1.2. Ince specifications: The mean value for the each set muvalue. The precision around the mean value must not evalue.	C and HQC) representing will be at a concentration near the upper limit of the n must be analyzed along within 15% of the nominal he same concentration. of test results obtained by easure of the degree of mstances. concentrations of analyte halyzing replicate sets of n will be determined using d precision for the towest ust be within ±15% of the
1.5	 (analyte standard are prepa Raw data A minim concentra A standa 	rve n: A standard curve details the relationship between in to internal standard) and known concentration of the an curve is also a reflection of accuracy of the method when a ured from different stock solutions. a required: um number of six standards per curve will define to ation and response. rd curve will be prepared by spiking the rat blood with known taistent amount of MTBE as internal standard.	atyte. Acceptance of the adjacent calibration points he relationship between

Page 29 of 45

Protocol No. RTI-932

Method Validation Report

VALIDATION PLAN	RTI INTERNATIONAL POST OFFICE BOX 12194 RESEARCH TRIANGLE PARK, NC 27709	
		Page 5 of 6
study. 4. A standa standardj non-zero 5. Adjacent Two stoc • Acceptar instrumer back-calc	concentration and curve range will be determined based rd curve must consist of a blank sample (matrix sample ; , a zero sample (matrix sample processed with internal st samples covering the expected range, including LOQ. concentration points on the curve will be prepared from k solutions will be used. nee specifications: A regression equation describing nt response relationship will be determined. A minimum sulated using the regression equation, must fall within 19 r LOQ (20%). The correlation coefficient (r) must be greate	processed without internal andard), and minimum six different stock solutions. If the concentration and in of six standards, when 5% of the nominal value,
specified sample h determini the analy Raw date three determini determini matrix, E be mainta analyzed ETBE of three re after prep to analys	n: The chemical stability of an analyte in a given matrix un time intervals. Stability procedures will evaluate the stal andling and short-term storage. Each step in the proce e the extent to which experimental and matrix variables ma- te in the matrix. a required for stability : To demonstrate storage stability arminations at two concentrations (LQC and HQC) is exam atton of Stability of ETBE Concentration in blood san ing concentration stability in blood will be prepared by placi ITBE, and the internal standard in headspace vials. These stined at room temperature until analysis. It is anticipated to by GC/MS within 24 hours of collection in the animal studie E stability will be determined by preparing four sample sets eplicates at two concentrations). One set of samples will aration. The second set will be stored at approximately 4° C in a alaysis. The fourth set will be stored at approximately 4° ore analysis.	bility of the analyte during dure will be assessed to y affect the quantitation of y of ETBE, a minimum of ined. https: Samples used for ing blank aliquots of blood blood matrix samples will hat blood samples will be s. (a sample set will consist be analyzed immediately e for at least 8 hours prior refrigerator for 16 hours

Page 30 of 45

Protocol No. RTI-932

Method Validation Report

VALIDATION PLAN	RTI INTERNATIONAL POST OFFICE BOX 12194 RESEARCH TRIANGLE PARK, NC 27709	
		Page 6 of 6
following low (LQ(calibratic response of spikin internal headspa • Accepta level mu	y solution stability: Concentration of ETBE in spiking solution stability: Concentration of ETBE in spiking solutions are approximately -20 ° C for 7 days. A minimum of a medium (MQC) concentrations will analyzed in three in curve in triplicate of the freshly prepared spiking solutions of ETBE to internal standard of MTBE versus the spig solution will be added into the headspace vial, and the vistandard solution will be added into the vial through septures (GC/MS analysis). Ince specifications: The mean value determined for each st be within $\pm 15\%$ of its initial analyzed concentration. The must not exceed 15% CV.	lutions will be determined of two spiking solutions at the replicates by using the ons by relationship of the iking concentration. 10 µl ial crimp sealed; 10 µl of m using 10-µl syringe for th concentration of ETBE
1 Prep LLQ4 2 Prep after 16 h 4 The stabi	Apparation for Validation are three sets of calibration standards including one set of C C, LQC, MQC and HQC before analysis, individually. are four sets of the LQC and HQC in triplicate, which will be storage at room temperature for 8 hours and after storage a burs and for 24 hours. analysis order for validation is listed below: prepared calibration curves are stored in refrigerator when w lity samples are stored under the required conditions.) Calibration curve set 1, including one set of QC samples 2) Stability samples) Calibration curve set 2, including one set of QC samples 3) Stability samples. 3) Calibration curve set 3, including one set of QC samples	analyzed immediately, at approximately 4° C for valting for analysis. The
GC-MS generate	falldation of samples, standards and quality control samples will be p system that has been validated with respect to the ac d data and computed results. Complete documentation e will be available for inspection.	curacy and reliability of

Page 31 of 45

Protocol No. RTI-932

Method Validation Report

Appendix 2

Analytical Method

Page 32 of 45

Protocol No. RTI-932

Method Validation Report

.

ANALYTICAL METHOD	RTI INTERNATIONAL AM-0209408.007.0 POST OFFICE BOX 12194 RESEARCH TRIANGLE PARK, NC 27709-2194 Page 1 of 13
TITLE:	Project Specific Analytical Method for Analysis of Ethyl tertiary Butyl Ether in Blood Samples
SOURCE:	Science and Engineering
AUTHOR:	Signed Jan Hong
	Date 04-02-2007
APPROVED BY:	Signed Jun Almy R. Jenned
	Date 04-02-07
EFFECTIVE DAT	E: 04-02-07 (This version)

Page 33 of 45

Protocol No. RTI-932

Method Validation Report

ANALYTICAL METHOD	RTI INTERNATIONAL POST OFFICE BOX 12194 RESEARCH TRIANGLE PARK, NC 27709-2194	AM-0209408.007.0 Page 2 of 13				
The methodc ethyl tert-butyl ether (Chromatography cou instrument using a he standard. Procedure regression analysis, a to be utilized in analysi	1.0 INTRODUCTION The methodology described in this document details procedures necessary for the quantitation of ethyl tert-butyl ether (ETBE) in rat blood. In this method, samples are analyzed using Gas Chromatography coupled with Mass Spectrometry detection (GC/MS). Samples are introduced into the instrument using a headspace autosampler and methyl tert-butyl ether (MTBE) serves as the internal standard. Procedures include preparation of calibration standards, analysis of standards and samples, regression analysis, acceptance criteria, and sample concentration calculations. This method is intended to be utilized in analyzes of ETBE in rat blood samples collected during studies designed to determine absorption and disposition of ETBE following oral administration. Blood samples (ca. 100 μL) collected					
approved by <u>Methyl tertiar</u> serves as the <u>N. N-Dimethy</u> <u>Distilled/Deio</u> <u>Helium:</u> 99.9	ID CHEMICALS Butyl Ether (ETBE): 99% purity, Sigma-Aldrich, St. Louis, MO. the study sponsor will be used for preparation of all standards in <u>y Butyl Ether (MTBE):</u> 99.9%, HPLC, Sigma-Aldrich, St. Louis, internal standard. <u>Afformamide (DMF):</u> 99.8%, A.C.S reagent, Sigma-Aldrich, St. <u>nized (D/I) water:</u> Obtain this reagent from the Corning Still in 96% purity, obtained from National Welders, Durham NC.	and QC samples. , MO. This compound Louis, MO Hermann 210.				

Page 34 of 45

Protocol No. RTI-932

Method Validation Report

ANALYT		POST OFFIC	RTI INTERNATIONAL POST OFFICE BOX 12194 RESEARCH TRIANGLE PARK, NC 27709-2194		
-				able 1	
	Item			Description	
	Electron	ic Balance		Four-place electronic balar Mettler AG 204, or equivale	
	Gas Ch (GC/MS	romatograph/Mass Sg ;)	pectrometer	Agilent Model 6890 gas chromatograph equipped v Agilent Model 5973 Mass S Detector (MSD), or equival	Selective
	Headsp the GC/	ace Autosampler inte MS	rfaced to	Agilent G1888A headspace autosampler, or equivalent	
	Electronic Pipet (100 µL)			Rainin Model LTS-100, or equivalent	
	Electron	ic Pipet (1000 μL)		Rainin Model LTS-1000, or equivalent	
	Electron	ic Pipet (10 μL)		Rainin Model LTS-10, or e	quivalent
	Microsy	ringe (10 μL)		Hamilton, Gastight #1801, equivalent	or
	Headsp	ace Vial		Agilent Technologies, 10 m botton,or equivalent, silylat hexamethyldisilazane using vacuum oven at 225 °C	ed with
	Headsp	ace Crimp Cap		Agilent Technologies, PTFE 20mm, or equivalent	/Si sep,
	Electron	ic Crimper		Agilent Technologies, 20m equivalent	m, or
4.0 SOLU 4.1		EPARATION (STOCH	K, INTERNAL	. STANDARD, AND SPIKIN	G)

Page 35 of 45

Protocol No. RTI-932

Method Validation Report

ANALYTICAL METHOD	RTI INTERNATIONAL POST OFFICE BOX 12194 RESEARCH TRIANGLE PARK, NC 27709-2194	AM-0209408.007.0 Page 4 of 13					
4.1.1 E	4.1.1 ETBE Stock Solution						
	vo stock solutions (Stocks A and B) at a target concentration of 25						
	nt dilution in preparation of calibration standards. Concentration of ted in units of micrograms ETBE per milliliter (mL) of solution. Pre						
	cording to the follow procedure. Store the ETBE stock solutions	•					
°C.							
1)	Fill a 10-ml volumetric flask with to the 10-mL volume mark.						
2)	Remove 328 µl of DMF from the flask using a pipet.						
3)	With the flask on an analytical balance, tare/zero the balance.						
4)	Add 340 μl of ETBE to the flask using a syringe. This volume o up to the 10-mL mark.	f ETBE fills the flask,					
5)	Record the mass (balance reading) of ETBE added to the flask						
6)	Immediately cool the flask contents in wet ice. Mix the stock so	olution by hand.					
7)	Calculation the actual concentration of stock solutions.						
4.1.2 N	ITBE Stock Solution						
Prepare th	e MTBE stock solutions as described below.						
1)	Fill a 10-mL volumetric flask with distilled/deionized water to the	e volume mark.					
2)	With the flask on the analytical balance, remove 12 μl of water	using pipet.					
3)	Tare/zero the analytical balance with the volumetric flask on th	e balance.					
4)	Add 16 μl of MTBE to the flask using a syringe. This volume wi the 10-mL volume mark.	ill fill the solution up to					
5)	Record the mass (balance reading) of MTBE added to the flask	c .					
6)	Immediately cool the flask contents in wet ice. Mix the stock so	lution by hand.					
7)	Calculation the actual concentration of the stock solution.						
8)	Store MTBE stock solution at approximately -20 °C.						

Page 36 of 45

Protocol No. RTI-932

Method Validation Report

ANALYTICAL METHOD	RTI INTERNATIONAL POST OFFICE BOX 12194 RESEARCH TRIANGLE PARK, NC 27709-2194	AM-0209408.007.0 Page 5 of 13			
The target in solution at ap 1) (2) 1 3) / 4,3 Prep	 The target internal standard solution concentration is 50 µg/ml. Store the internal standard solution at approximately -20 °C. 1) Calculate the actual amount of MTBE stock solution required to prepare a 10 mL volume of a 50 µg/mL MTBE solution. 2) Transfer the appropriate amount of the MTBE stock solution to a 10-mL volumetric flask. 3) Add water to the flask completing the 10-mL dilution. Mix the flask contents by hand. 4) Aliquot and store the internal standard working solution at approximately -20 °C. 				
solutions. Pr in wet ice pri solution, dist spiking soluti	and 2500 µg/mL. Adjacent spiking standard concentrations are prepared using different stock solutions. Prepare spiking solutions in wet ice. Ensure water used to prepare solutions is cooled in wet ice prior to use. Prepare the spiking solutions as described below. Amount of stock solution, distilled/deionized water and the target final volume required for preparation of calibration spiking solution are shown in the table 2. Collect the weight of added distilled/deionized water and total solution volumes where noted.				
2) 3) 1 4) (Add the cold distilled/deionized water into a tared vial, and reco added. Fransfer the appropriate amount of stock or spiking solution int weight after spiking standard solution added. Total amount of s vater wt. Wix the spiking standard solution by hand. Calculate dilution factors for each spiking standard solution by e spiking standard solution by the total weight of solution except for the density of DMF is used to calculate the volume of stock so divided to the total weight of solution factor. Niquot and store the spiking solutions at approximately -20 °C of the spiking standard solution solution solution factor.	o the vial. Record the olution = stock wt + dividing the weight of or the stock solution. lution added, which is			

Page 37 of 45

Protocol No. RTI-932

Method Validation Report

PO		TI INTERNATIONAL DST OFFICE BOX 12194 ESEARCH TRIANGLE PARK, NC 27709-2194			AM-0209408.007 Page 6 of 13	
Table 2 Preparation of ETBE Spiking Solutions						
Spiking Water Required Stock or Spiking Stock or Spiking Nominal Diluti Standard (mL) Solution required Standard Aliquot Nominal Diluti Solution Volume (mL) Standard Aliquot Factor				Nominal Diluti Factor	Target Nominal Concentration (µg/mL)	
Spk. Std. A6		x	Stock A	0.375	1:10	2500
Spk. Std. B5		Y	Stock B	0.150	1:25	1000
Spk. Sid. A5 (HQC)		3	Spk. Std. A6	0.75	1:5	500
Spk. Std. B4		3	Spk. Std. B5	1	1:4	250
Spk. Std. A4		3	Spk. Std. A5	0.75	1:5	100
Spk. Std. B3 (MQC)		3	Spk. Std. B4	0.75	1:5	50
Spk. Std. A3		3	Spk. Std. A4	1	1:4	25
Spk. Std. B2		3	Spk. Std. B3	0.75	1:5	10
Spk. Std. A2 (LQC)		3	Spk. Std. A3	0.75	1:5	5.0
Spk. Std. B1		3	Spk. Std. B2	1	1:4	2.5
Spk. Std. A1 (LLQC)		3	Spk. Std. A2	0.75	1:5	1.0
-).375 mL)/(2500 μ).15 mL)/1000 μg/			

Note: Dilution factors shown in the table are targets for using pipets to perform the dilution. Weights of added water and total dilution weights must be collected for calculation of dilution factors by weight.

Page 38 of 45

Protocol No. RTI-932

Method Validation Report

ANALYTICAL METHOD	RTI INTERNATIONAL POST OFFICE BOX 12194 RESEARCH TRIANGLE PARK, NC 27709-2194	AM-0209408.007.0 Page 7 of 13					
Prepare blank sampl	5.0 PREPARATION OF CALIBRATION STANDARDS AND QUALITY CONTROL SAMPLES Prepare blank samples (without internal standard), zero samples (containing internal standard), calibration standards, and quality control (QC) samples prior to analysis according to the procedure listed below and Table 3.						
1) /	Aliquot 90 μ l of blank blood into a 10-ml headspace vial.						
2)	Transfer 10 μ l of ETBE spiking solution to the vial.						
3)	mmediately seal the vial with a crimp-top.						
	Add 10 μ l of internal standard working solution to the vial throug	h septum using a					
	10-µl microsyringe, except for the blank sample.						
		-					

Page 39 of 45

Protocol No. RTI-932

Method Validation Report

Table 3 Preparation of ETBE Calibration Standards QC Samples in Blood						
Standard ID	Spiking Solution ID	Volume of Rat Blood (µl)	Volume of Spiking Solution (µl)	Final Volume (µl)	Nominal final concentration (µg/ml)	Volume of ISTD added (µl)
Blood Blank	n/a	100	0	100	0	0
ISTD Blank	n/a	100	0	100	0	10
Std A1 (LLQC)	A1	90	10	100	0.1	10
Std B1	B1	90	10	100	0.25	10
Std A2 (LQC)	A2	90	10	100	0.50	10
Std B2	B2	90	10	100	1.00	10
Std A3	A3	90	10	100	2.50	10
Std B3 (MQC)	B3	90	10	100	5.00	10
Std A4	A4	90	10	100	10.0	10
Std B4	B4	90	10	100	25.0	10
Std A5	A5	90	10	100	50.0	10
Std B5 (HQC)	B5	90	10	100	100	10
SId A6	A6	90	10	100	250	10

Page 40 of 45

Protocol No. RTI-932

Method Validation Report

ANALYTICAL METHOD		•	RTI INTERNATIONAL POST OFFICE BOX 12194 RESEARCH TRIANGLE PARK, NC 27709-2194	AM-0209408.007.0 Page 9 of 13					
6.0 PREPARATION OF BLOOD SAMPLES FOR ANALYSIS									
Follow	the proce	dure	listed below for preparation of blood samples obtained during	study for analysis.					
	 Immediately upon collection of blood, place the blood sample in a pre-weighed 10-ml headspace vial. Seal the vial with a crimp-style cap and reweigh the filled vial to determine the weight of the whole blood sample. 								
 Add 10 µl of an aqueous internal standard working solution of MTBE through the septum using 10-µl microsyringe. 									
3) Analyze samples as soon as possible. Storage limits are as follows: Room temperature for no longer than 8 hours, or refrigeration at approximately 4 °C for no longer than 24 hours prior to loading these samples into the headspace autosampler									
		4) A	Analyze QC samples throughout the blood samples.						
7.0 ANALYSIS									
	5.1 1	nstri	ument Method						
Assay samples and standards according to GC/MS instrument parameters detailed in Table 4.									
	5.2 Analysis Sequence								
Analysis of standards and samples should proceed in the order detailed below.									
	1	1) [Daily Tune of the MS spectrometer (prior to sample analysis)						
			Chromatography system verification sample (A spiking solution beak shape of analytes)	n used for checking					
	:	3) (Calibration standard (Set 1)						
	4	4) F	Rat blood samples						
		5) (Calibration standards (Set 2)						
	(6) F	Rat blood samples						
	7	<i>n</i>) (Calibration standards (Set 3)						

Page 41 of 45

Protocol No. RTI-932

Method Validation Report

ANALYTICAL METHOD	POST O	RNATIONAL FFICE BOX 12194 RCH TRIANGLE PARK, NC 27709-2194	AM-0209408.007.0 Page 10 of 13	
	Table 4 Instrument Conditions			
6890 GC				
Injection m	ethod	split/splitless		
Temperatu	e	150 °C		
Split ratio		15:1 (calculated by adding flow rate of HSS)		
Carrier gas		Helium		
Flow rate		1.7 ml/min		
Column		DB-624 30m x 0.32 mm i.d. 1.8 µm film thickness		
		(J&W, Agilent technologies, Wilmington, DE)		
GC oven p				
Initial temp	erature	40 °C		
Initial time		2 min		
	re program rate	5 °C/min		
Final temp	erature	50 °C		
Final time		0 min		
Temperatu		50 °C/min		
Final temp		150 °C		
Final time /	A	0 min		
Run time		6 min		
G1888A hr	adspace sampler			
Loop size		1 m]		
Vial Pressu		15 psig		
Carrier Pre		2.8 psig		
Headspace		65 °C		
loop tempe		90 °C		
	e temperature	110 °C		
Equilibratio		10 min		
GC cycle ti		10 min		
Pressurizat	ion	0.2 min		
Loop Fill		0.2 min 0.05 min		
Loop Equili Inject	orasion	0.05 min 0.5 min		
Inject Shake		0.5 min low		
OnaAU		1011		
5973 MSD				
Scan		El mode		
SIM		ETBE (m/z) 87; MTBE (m/z 73)		
Source terr	perature	230 °C		
Quad temp	erature	150 °C		
Transfer lin	0	230 °C		
Tune		Atune.u		
Solvent del	,	3.0 min		
Timed dete	ctor off	6.0 min		

Page 42 of 45

Protocol No. RTI-932

Method Validation Report

ANALYTICAL METHOD		AL	RTI INTERNATIONAL POST OFFICE BOX 12194 RESEARCH TRIANGLE PARK, NC 27709-2194	AM-0209408.007.0 Page 11 of 13				
8.0	8.0 CALCULATION OF RESULTS							
	8.1	Calit	oration Standards					
	Perform the following calculations using calibration standard assay results. When possible, use Microsoft Excel spreadsheets for the calculation.							
			Integrate the ETBE and MTBE peaks in all samples and standards to generate p areas.					
		2) Generate two plots of peak area (internal standard) ratio of ETBE/MTBE versus the nominal standard concentration containing the following standard ranges: 1) ca. 0.1 µg/mL to ca. 5.0 µg/mL, and 2) ca. 5.0 µg/mL to ca. 250 µg/mL. Include all three replicate standards at each concentration in each plot.						
			Using the program TableCurve (Systat Software Inc., Richmond weighted (1/x) linear regression equation (Y=rnx+b) for each plo					
		4)	Determine the correlation coefficient (r) for each linear regression	on.				
			Compute the concentration of all calibration standards using the and their coefficients of slope and intercept.	e regression equations				
	Ĩ		Compute the accuracy (%) for each standard by dividing the calculated concentration by the nominal standard concentration. Multiply the result by 100 to complete the calculation.					
		1	For the method validation results, compute concentration, mear standard deviation, and relative standard deviation for the six re three concentrations (three calibration standards plus the three prepared per concentration). Also, calculate the mean accuracy three concentrations. These results are used to establish accur the method during validation.	plicates prepared at additional standards y value for each of the				
8.2 Qualit			ity Control (QC) Samples					

Page 43 of 45

Protocol No. RTI-932

Method Validation Report

	ANALYTICAL METHOD		AL.	RTI INTERNATIONAL POST OFFICE BOX 12194 RESEARCH TRIANGLE PARK, NC 27709-2194	AM-0209408.007.0 Page 12 of 13		
				Use the linear regression equation to calculate concentration of samples.	ETBE in the QC		
		 Divide the calculated concentration by the nominal concentration and multip result by 100 to obtain the Accuracy % value. 					
		8.3	Blood Samples				
	If the calibration curves meet acceptance criteria stated in Section 9.1, use the linear regression equations to calculate sample concentrations. Use Microsoft Excel spreadsheets to perform these calculations. Use the weight of sample collected to correct for differences between the actual sample weight and the volume of blood user for generation of standards.						
	9.0 ACCEPTANCE CRITERIA						
		9.1	Linear Regression and Calibration Curve				
		Acceptance criteria for the calibration curve are as follows:					
	1) Correlation coefficient (r) greater than or equal to 0.990						
	 Measure concentrations of individual calibration standards must be within a the nominal value except the lowest concentration point (LLOQ) which must ± 20 %. 						
	9.2 QC 5		QC S	Samples			
concentrations of at least 4 out of 6 of QC			conce	samples (LLQC excluded) are distributed throughout the sam entrations of at least 4 out of 6 of QC samples must fall within for acceptance of results for samples bracketed in between th	15% of the nominal		

Page 44 of 45

RTI Project No.: 0209408.007

Protocol No. RTI-932

Method Validation Report

	POST	NTERNATIONAL FOFFICE BOX 12194 EARCH TRIANGLE PARK, NC 27709-2194	AM-0209408.007.0 Page 13 of 13
		REVIEW/ REVISION LOG	
<u>Rev. #</u>	Rev. Date NA	Description Original version.	
	NA		
		· · · · · · · · · · · · · · · · · · ·	

Page 45 of 45

Appendix D

Pharmacokinetic Analysis

BEGIN

Input File: Data - [C:\WINNONLN\USERCOMP\ETBE\ETBEDATA.WDO] Animal=AM01 Start Time: 12:33:41 07-15-2007 End Time: 12:33:42 07-15-2007 WINNONLIN NONCOMPARTMENTAL ANALYSIS PROGRAM (V01.5A) Core Version 290ct97 Listing of input commands TITLE 1 0209408.007, ETBE, RTI-932, Rats AM01-DF05 Analysis 1 MODEL 200 DATE TIME NVARIABLES 5 NPOINTS 100 XNUMBER 2 YNUMBER 3 DTIME 0 NCONSTANTS 1 CONSTANTS 49.518 METHOD 2 'Linear trapezoidal MISSING 'Missing' NOBSERVATIONS 5 DATA 'WINNLIN.DAT'

D-2

0209408.007, ETBE, RTI-932, Rats AM01-DF05 Analysis 1

WINNONLIN NONCOMPARTMENTAL ANALYSIS PROGRAM

Noncompartmental Analysis for Extravascular Administration

Linear Trapezoidal Rule Used to Compute AUC, AUMC

Х		Y	Pred.	Res.	AUC	AUMC	WEIGHT
.0000		.0000			.0000	.0000	
.2600	*	5.914	3.887	2.028	.7689	.1999	1.000
.5122	*	3.588	3.217	.3711	1.967	.6256	1.000
.9850	*	1.732	2.257	5248	3.225	1.464	1.000
2.053	*	.5660	1.014	4482	4.452	2.994	1.000
4.054	*	.3114	.2264	.8503E-01	5.330	5.420	1.000

*) Starred values were included in estimation of Lambda_z.

Dosing_time	.0000
Rsq	.8849
Rsq(adjusted)	.8465
Corr(x:y)	9407
Tlaq	.0000
Tmax	.2600
Cmax	5.9143
Nopoints_Lambda_z	5
Tlast	4.0536
Clast	.3114
AUClast	5.3297
Lambda_z	.7495
Lambda_z_lower	.2600
Lambda_z_upper	4.0536
t1/2_Lambda_z	.9249
AUCall	5.3297
AUCINF(observed)	5.7452
AUCINF(observed)/D	.1160
AUC_%Extrap(obs.)	7.2320
Vz(observed)/F	11.5003
Cl(observed)/F	8.6190
AUCINF(predicted)	5.6318
AUCINF(predicted)/D	.1137
AUC_%Extrap(pred.)	5.3631
Vz(predicted)/F	11.7319
Cl(predicted)/F	8.7926
AUMClast	5.4198
AUMCINF(observed)	7.6584
AUMC_%Extrap(obs.)	29.2310
AUMCINF(predicted)	7.0471
AUMC_%Extrap(pred.)	23.0923
MRTlast	1.0169
MRTINF(observed)	1.3330

1.2513

```
Input File: Data - [C:\WINNONLN\USERCOMP\ETBE\ETBEDATA.WDO]
Animal=AM02
Start Time: 12:33:42 07-15-2007
End Time: 12:33:43 07-15-2007
          WINNONLIN NONCOMPARTMENTAL ANALYSIS PROGRAM (V01.5A)
                          Core Version 290ct97
Listing of input commands
TITLE 1
0209408.007, ETBE, RTI-932, Rats AM01-DF05 Analysis 1
MODEL 200
DATE
TIME
NVARIABLES 5
NPOINTS 100
XNUMBER 2
YNUMBER 3
DTIME 0
NCONSTANTS 1
CONSTANTS 50.958
METHOD 2 'Linear trapezoidal
MISSING 'Missing'
NOBSERVATIONS 5
DATA 'WINNLIN.DAT'
BEGIN
```

0209408.007, ETBE, RTI-932, Rats AM01-DF05 Analysis 1

WINNONLIN NONCOMPARTMENTAL ANALYSIS PROGRAM

Noncompartmental Analysis for Extravascular Administration

Linear Trapezoidal Rule Used to Compute AUC, AUMC

Х		Y	Pred.	Res.	AUC	AUMC	WEIGHT
.0000		.0000			.0000	.0000	
.2386		5.949			.7098	.1694	
.4903	*	3.038	2.540	.4976	1.841	.5354	1.000
.9828	*	1.876	1.810	.6587E-01	3.051	1.356	1.000
1.984	*	.6302	.9094	2792	4.305	2.904	1.000
3.974	*	.2692	.2312	.3799E-01	5.200	5.214	1.000

*) Starred values were included in estimation of Lambda_z.

Dosing_time Rsq Rsq(adjusted)	.0000 .9465 .9197
Corr(x:y)	9729
Tlag	.0000
Tmax	.2386
Cmax	5.9491
Nopoints_Lambda_z	4
Tlast	3.9744
Clast	.2692
AUClast	5.2001
Lambda_z	.6879
Lambda_z_lower	.4903
Lambda_z_upper	3.9744
t1/2_Lambda_z	1.0076
AUCall	5.2001
AUCINF(observed)	5.5914
AUCINF(observed)/D	.1097
AUC_%Extrap(obs.)	6.9985
Vz(observed)/F	13.2485
Cl(observed)/F	9.1136
AUCINF(predicted)	5.5362
AUCINF(predicted)/D	.1086
AUC_%Extrap(pred.)	6.0707
Vz(predicted)/F	13.3807
Cl(predicted)/F	9.2046
AUMClast	5.2136
AUMCINF(observed)	7.3377
AUMC_%Extrap(obs.)	28.9478 7.0379
AUMCINF(predicted)	25.9212
AUMC_%Extrap(pred.) MRTlast	1.0026
MRTINF(observed)	1.3123
	1.5125

1.2713

```
Input File: Data - [C:\WINNONLN\USERCOMP\ETBE\ETBEDATA.WDO]
Animal=AM03
Start Time: 12:33:43 07-15-2007
End Time: 12:33:44 07-15-2007
          WINNONLIN NONCOMPARTMENTAL ANALYSIS PROGRAM (V01.5A)
                          Core Version 290ct97
Listing of input commands
TITLE 1
0209408.007, ETBE, RTI-932, Rats AM01-DF05 Analysis 1
MODEL 200
DATE
TIME
NVARIABLES 5
NPOINTS 100
XNUMBER 2
YNUMBER 3
DTIME 0
NCONSTANTS 1
CONSTANTS 50.052
METHOD 2 'Linear trapezoidal
MISSING 'Missing'
NOBSERVATIONS 5
DATA 'WINNLIN.DAT'
BEGIN
```

0209408.007, ETBE, RTI-932, Rats AM01-DF05 Analysis 1

WINNONLIN NONCOMPARTMENTAL ANALYSIS PROGRAM

Noncompartmental Analysis for Extravascular Administration

Linear Trapezoidal Rule Used to Compute AUC, AUMC

Х		Y	Pred.	Res.	AUC	AUMC	WEIGHT
.0000		.0000			.0000	.0000	
.2358	*	7.435	5.513	1.922	.8767	.2068	1.000
.4950	*	4.991	4.380	.6103	2.487	.7541	1.000
.9939	*	2.358	2.814	4557	4.320	1.955	1.000
1.986	*	.6902	1.167	4764	5.833	3.798	1.000
3.983	*	.2605	.1985	.6204E-01	6.782	6.203	1.000

*) Starred values were included in estimation of Lambda_z.

Dosing_time	.0000
Rsq	.9373
Rsq(adjusted)	.9164
Corr(x:y)	9682
Tlaq	.0000
Tmax	.2358
Cmax	7.4352
Nopoints_Lambda_z	5
Tlast	3.9828
Clast	.2605
AUClast	6.7819
Lambda_z	.8871
Lambda_z_lower	.2358
Lambda_z_upper	3.9828
t1/2_Lambda_z	.7813
AUCall	6.7819
AUCINF(observed)	7.0756
AUCINF(observed)/D	.1414
AUC_%Extrap(obs.)	4.1508
Vz(observed)/F	7.9740
Cl(observed)/F	7.0739
AUCINF(predicted)	7.0056
AUCINF(predicted)/D	.1400
AUC_%Extrap(pred.)	3.1940
Vz(predicted)/F	8.0536
Cl(predicted)/F	7.1445
AUMClast	6.2028
AUMCINF(observed)	7.7035
AUMC_%Extrap(obs.)	19.4816
AUMCINF(predicted)	7.3462
AUMC_%Extrap(pred.)	15.5650
MRTlast	.9146
MRTINF(observed)	1.0888

1.0486

```
Input File: Data - [C:\WINNONLN\USERCOMP\ETBE\ETBEDATA.WDO]
Animal=AM04
Start Time: 12:33:44 07-15-2007
End Time: 12:33:45 07-15-2007
          WINNONLIN NONCOMPARTMENTAL ANALYSIS PROGRAM (V01.5A)
                          Core Version 290ct97
Listing of input commands
TITLE 1
0209408.007, ETBE, RTI-932, Rats AM01-DF05 Analysis 1
MODEL 200
DATE
TIME
NVARIABLES 5
NPOINTS 100
XNUMBER 2
YNUMBER 3
DTIME 0
NCONSTANTS 1
CONSTANTS 48.127
METHOD 2 'Linear trapezoidal
MISSING 'Missing'
NOBSERVATIONS 5
DATA 'WINNLIN.DAT'
BEGIN
```

0209408.007, ETBE, RTI-932, Rats AM01-DF05 Analysis 1

WINNONLIN NONCOMPARTMENTAL ANALYSIS PROGRAM

Noncompartmental Analysis for Extravascular Administration

Linear Trapezoidal Rule Used to Compute AUC, AUMC

Х		Y	Pred.	Res.	AUC	AUMC	WEIGHT
.0000		.0000			.0000	.0000	
.2364		6.758			.7987	.1888	
.5108		2.970			2.134	.6162	
1.018	*	1.381	1.234	.1463	3.236	1.357	1.000
1.990	*	.6732	.7947	1215	4.235	2.691	1.000
4.009	*	.3361	.3185	.1765E-01	5.253	5.403	1.000

*) Starred values were included in estimation of Lambda_z.

Dosing_time	.0000
Rsq	.9569
Rsq(adjusted)	.9139
Corr(x:y)	9782
Tlag	.0000
Tmax	.2364
Cmax	6.7576
Nopoints_Lambda_z	3
Tlast	4.0086
Clast	.3361
AUClast	5.2534
Lambda_z	.4530
Lambda_z_lower	1.0178
Lambda_z_upper	4.0086
t1/2_Lambda_z	1.5302
AUCall	5.2534
AUCINF(observed)	5.9954
AUCINF(observed)/D	.1246
AUC_%Extrap(obs.)	12.3763
Vz(observed)/F	17.7209
Cl(observed)/F	8.0274
AUCINF(predicted)	5.9564
AUCINF(predicted)/D	.1238
AUC_%Extrap(pred.)	11.8031
Vz(predicted)/F	17.8368
Cl(predicted)/F	8.0799
AUMClast	5.4032
AUMCINF(observed)	10.0156
AUMC_%Extrap(obs.)	46.0523
AUMCINF(predicted)	9.7734
AUMC_%Extrap(pred.)	44.7154
MRTlast	1.0285
MRTINF(observed)	1.6706

1.6408

```
Input File: Data - [C:\WINNONLN\USERCOMP\ETBE\ETBEDATA.WDO]
Animal=BF01
Start Time: 12:33:45 07-15-2007
End Time: 12:33:46 07-15-2007
          WINNONLIN NONCOMPARTMENTAL ANALYSIS PROGRAM (V01.5A)
                          Core Version 290ct97
Listing of input commands
TITLE 1
0209408.007, ETBE, RTI-932, Rats AM01-DF05 Analysis 1
MODEL 200
DATE
TIME
NVARIABLES 5
NPOINTS 100
XNUMBER 2
YNUMBER 3
DTIME 0
NCONSTANTS 1
CONSTANTS 50.286
METHOD 2 'Linear trapezoidal
MISSING 'Missing'
NOBSERVATIONS 5
DATA 'WINNLIN.DAT'
BEGIN
```

0209408.007, ETBE, RTI-932, Rats AM01-DF05 Analysis 1

WINNONLIN NONCOMPARTMENTAL ANALYSIS PROGRAM

Noncompartmental Analysis for Extravascular Administration

Linear Trapezoidal Rule Used to Compute AUC, AUMC

Х		Y	Pred.	Res.	AUC	AUMC	WEIGHT
.0000		.0000			.0000	.0000	
.2300		5.163			.5937	.1366	
.4733		4.118			1.723	.5182	
.9847	*	1.951	2.096	1453	3.275	1.508	1.000
1.979	*	1.098	.9875	.1105	4.790	3.542	1.000
4.064	*	.1966	.2035	6847E-02	6.140	6.641	1.000

*) Starred values were included in estimation of Lambda_z.

Dosing_time	.0000
Rsq	.9938
Rsq(adjusted)	.9877
Corr(x:y)	9969
Tlag	.0000
Tmax	.2300
Cmax	5.1629
Nopoints_Lambda_z	3
Tlast	4.0644
Clast	.1966
AUClast	6.1398
Lambda_z	.7573
Lambda_z_lower	.9847
Lambda_z_upper	4.0644
t1/2_Lambda_z	.9152
AUCall	6.1398
AUCINF(observed)	6.3994
AUCINF(observed)/D	.1273
AUC_%Extrap(obs.)	4.0566
Vz(observed)/F	10.3757
Cl(observed)/F	7.8580
AUCINF(predicted)	6.4084
AUCINF(predicted)/D	.1274
AUC_%Extrap(pred.)	4.1919
Vz(predicted)/F	10.3610
Cl(predicted)/F	7.8469
AUMClast	6.6410
AUMCINF(observed)	8.0389
AUMC_%Extrap(obs.)	17.3890
AUMCINF(predicted)	8.0876
AUMC_%Extrap(pred.)	17.8863
MRTlast	1.0816
MRTINF(observed)	1.2562

1.2620

```
Input File: Data - [C:\WINNONLN\USERCOMP\ETBE\ETBEDATA.WDO]
Animal=BF02
Start Time: 12:33:46 07-15-2007
End Time: 12:33:47 07-15-2007
          WINNONLIN NONCOMPARTMENTAL ANALYSIS PROGRAM (V01.5A)
                          Core Version 290ct97
Listing of input commands
TITLE 1
0209408.007, ETBE, RTI-932, Rats AM01-DF05 Analysis 1
MODEL 200
DATE
TIME
NVARIABLES 5
NPOINTS 100
XNUMBER 2
YNUMBER 3
DTIME 0
NCONSTANTS 1
CONSTANTS 50.466
METHOD 2 'Linear trapezoidal
MISSING 'Missing'
NOBSERVATIONS 5
DATA 'WINNLIN.DAT'
BEGIN
```

0209408.007, ETBE, RTI-932, Rats AM01-DF05 Analysis 1

WINNONLIN NONCOMPARTMENTAL ANALYSIS PROGRAM

Noncompartmental Analysis for Extravascular Administration

Linear Trapezoidal Rule Used to Compute AUC, AUMC

Х		Y	Pred.	Res.	AUC	AUMC	WEIGHT
.0000		.0000 4.150			.0000	.0000	
.4678	*	2.919	2.846	.7336E-01	1.235	.4019	1.000
.9792 1.984	*	2.215 .9231	2.053 1.080	.1621 1572	2.548 4.125	1.306 3.316	1.000 1.000
4.046	*	.3061	.2895	.1660E-01	5.392	6.480	1.000

*) Starred values were included in estimation of Lambda_z.

Dosing_time Rsq Rsq(adjusted)	.0000 .9889 .9834
Corr(x:y)	9945
Tlag	.0000
Tmax	.2867
Cmax	4.1497
Nopoints_Lambda_z	4
Tlast	4.0456
Clast	.3061
AUClast	5.3916 .6388
Lambda_z Lambda_z_lower	.6388
Lambda_z_upper	4.0456
t1/2_Lambda_z	1.0450
AUCall	5.3916
AUCINF(observed)	5.8708
AUCINF(observed)/D	.1163
AUC_%Extrap(obs.)	8.1621
Vz(observed)/F	13.4566
Cl(observed)/F	8.5962
AUCINF(predicted)	5.8448
AUCINF(predicted)/D	.1158
AUC_%Extrap(pred.)	7.7537
Vz(predicted)/F	13.5164
Cl(predicted)/F	8.6344
AUMClast	6.4801
AUMCINF(observed)	9.1687
AUMC_%Extrap(obs.)	29.3242
AUMCINF(predicted)	9.0229
AUMC_%Extrap(pred.)	28.1819
MRTlast	1.2019
MRTINF(observed)	1.5618

1.5438

```
Input File: Data - [C:\WINNONLN\USERCOMP\ETBE\ETBEDATA.WDO]
Animal=BF03
Start Time: 12:33:47 07-15-2007
End Time: 12:33:48 07-15-2007
          WINNONLIN NONCOMPARTMENTAL ANALYSIS PROGRAM (V01.5A)
                          Core Version 290ct97
Listing of input commands
TITLE 1
0209408.007, ETBE, RTI-932, Rats AM01-DF05 Analysis 1
MODEL 200
DATE
TIME
NVARIABLES 5
NPOINTS 100
XNUMBER 2
YNUMBER 3
DTIME 0
NCONSTANTS 1
CONSTANTS 51.466
METHOD 2 'Linear trapezoidal
MISSING 'Missing'
NOBSERVATIONS 5
DATA 'WINNLIN.DAT'
BEGIN
```

0209408.007, ETBE, RTI-932, Rats AM01-DF05 Analysis 1

WINNONLIN NONCOMPARTMENTAL ANALYSIS PROGRAM

Noncompartmental Analysis for Extravascular Administration

Linear Trapezoidal Rule Used to Compute AUC, AUMC

Х		Y	Pred.	Res.	AUC	AUMC	WEIGHT
.0000		.0000			.0000	.0000	
.2011		6.164			.6198	.1247	
.4869		3.333			1.977	.5338	
1.014	*	1.502	1.317	.1846	3.252	1.363	1.000
2.032	*	.6970	.8449	1479	4.371	2.859	1.000
4.211	*	.3473	.3266	.2064E-01	5.509	5.996	1.000

*) Starred values were included in estimation of Lambda_z.

Dosing_time Rsq Rsq(adjusted) Corr(x:y) Tlag Tmax Cmax Nopoints_Lambda_z Tlast Clast AUClast Lambda_z Lambda_z_lower Lambda_z_lower Lambda_z_upper t1/2_Lambda_z AUCall AUCINF(observed) AUCINF(observed)/D AUC_%Extrap(obs.) Vz(observed)/F Cl(observed)/F	.0000 .9460 .8919 9726 .0000 .2011 6.1641 3 4.2111 .3473 5.5086 .4362 1.0142 4.2111 1.5892 5.5086 6.3048 .1225 12.6278 18.7150 8.1630
AUCINF(predicted) AUCINF(predicted)/D	6.2575
AUC_%Extrap(pred.) Vz(predicted)/F Cl(predicted)/F AUMClast AUMCINF(observed) AUMC_%Extrap(obs.) AUMCINF(predicted) AUMC_%Extrap(pred.) MRTlast	11.9670 18.8566 8.2247 5.9957 11.1737 46.3412 10.8659 44.8213 1.0884
MRTINF(observed)	1.7723

1.7365

```
Input File: Data - [C:\WINNONLN\USERCOMP\ETBE\ETBEDATA.WDO]
Animal=BF04
Start Time: 12:33:48 07-15-2007
End Time: 12:33:49 07-15-2007
          WINNONLIN NONCOMPARTMENTAL ANALYSIS PROGRAM (V01.5A)
                          Core Version 290ct97
Listing of input commands
TITLE 1
0209408.007, ETBE, RTI-932, Rats AM01-DF05 Analysis 1
MODEL 200
DATE
TIME
NVARIABLES 5
NPOINTS 100
XNUMBER 2
YNUMBER 3
DTIME 0
NCONSTANTS 1
CONSTANTS 51.974
METHOD 2 'Linear trapezoidal
MISSING 'Missing'
NOBSERVATIONS 5
DATA 'WINNLIN.DAT'
BEGIN
```

0209408.007, ETBE, RTI-932, Rats AM01-DF05 Analysis 1

WINNONLIN NONCOMPARTMENTAL ANALYSIS PROGRAM

Noncompartmental Analysis for Extravascular Administration

Linear Trapezoidal Rule Used to Compute AUC, AUMC

Х		Y	Pred.	Res.	AUC	AUMC	WEIGHT
.0000		.0000			.0000	.0000	
.2217 .4969	*	7.872 4.048	3.147	.9014	.8725 2.513	.1934 .7104	1.000
.9892 1.992	*	1.984 .6272	2.085 .9016	1012 2744	3.998 5.307	1.688 3.299	1.000 1.000
4.025	*	.1935	.1647	.2872E-01	6.141	5.360	1.000

*) Starred values were included in estimation of Lambda_z.

Dosing_time Rsq Rsq(adjusted) Corr(x:y) Tlag Tmax	.0000 .9582 .9372 9789 .0000 .2217
Cmax	7.8718
Nopoints_Lambda_z	4
Tlast	4.0250
Clast	.1935
AUClast	6.1410
Lambda_z	.8361
Lambda_z_lower	.4969
Lambda_z_upper	4.0250
t1/2_Lambda_z	.8290
AUCall	6.1410
AUCINF(observed)	6.3724
AUCINF(observed)/D	.1226
AUC_%Extrap(obs.)	3.6311
Vz(observed)/F	9.7553
Cl(observed)/F	8.1562
AUCINF(predicted)	6.3380
AUCINF(predicted)/D	.1219
AUC_%Extrap(pred.)	3.1088
Vz(predicted)/F	9.8082
Cl(predicted)/F	8.2004
AUMClast	5.3604
AUMCINF(observed)	6.5684
AUMC_%Extrap(obs.)	18.3921
AUMCINF(predicted)	6.3891
AUMC_%Extrap(pred.)	16.1014
MRTlast	.8729
MRTINF(observed)	1.0308

1.0081

```
Input File: Data - [C:\WINNONLN\USERCOMP\ETBE\ETBEDATA.WDO]
Animal=CM01
Start Time: 12:33:49 07-15-2007
End Time: 12:33:50 07-15-2007
          WINNONLIN NONCOMPARTMENTAL ANALYSIS PROGRAM (V01.5A)
                          Core Version 290ct97
Listing of input commands
TITLE 1
0209408.007, ETBE, RTI-932, Rats AM01-DF05 Analysis 1
MODEL 200
DATE
TIME
NVARIABLES 5
NPOINTS 100
XNUMBER 2
YNUMBER 3
DTIME 0
NCONSTANTS 1
CONSTANTS 10.311
METHOD 2 'Linear trapezoidal
MISSING 'Missing'
NOBSERVATIONS 4
DATA 'WINNLIN.DAT'
BEGIN
```

0209408.007, ETBE, RTI-932, Rats AM01-DF05 Analysis 1

WINNONLIN NONCOMPARTMENTAL ANALYSIS PROGRAM

Noncompartmental Analysis for Extravascular Administration

Linear Trapezoidal Rule Used to Compute AUC, AUMC

Х		Y	Pred.	Res.	AUC	AUMC	WEIGHT
.0000		.0000 1.019			.0000 .1206	.0000 .2853E-01	
.4958	*	.4226	.3939	.2869E-01	.3074	.8693E-01	1.000
.9917	*	.2188	.2431	2432E-01	.4664	.1927	1.000
1.985	*	.9580E-01	.9250E-01	.3304E-02	.6226	.3949	1.000

*) Starred values were included in estimation of Lambda_z.

 $@) \ \mbox{Note}$ - the concentration at time zero (DTIME) was added for extrapolation purposes

Dosing_time Rsq Rsq(adjusted) Corr(x:y) Tlag Tmax Cmax	.0000 .9844 .9687 9922 .0000 .2367 1.0189
Nopoints_Lambda_z Tlast	3 1.9850
Clast	1.9850
AUClast	.6226
Lambda z	.9730
Lambda_z_lower	.4958
Lambda_z_upper	1.9850
t1/2_Lambda_z	.7124
AUCall	.6226
AUCINF(observed)	.7211
AUCINF(observed)/D	.0699
AUC_%Extrap(obs.)	13.6549
Vz(observed)/F	14.6965
Cl(observed)/F	14.2990
AUCINF(predicted)	.7177
AUCINF(predicted)/D	.0696
AUC_%Extrap(pred.)	13.2464
Vz(predicted)/F	14.7661 14.3667
Cl(predicted)/F AUMClast	.3949
AUMCIASC AUMCINF(observed)	.3949 .6916
AUMCINF(ODServed) AUMC_%Extrap(obs.)	42.8969
AUMCINF(predicted)	.6813
AUMC_%Extrap(pred.)	42.0394
MRTlast	.6342
MRTINF(observed)	.9590
MRTINF(predicted)	.9493
-	

```
Input File: Data - [C:\WINNONLN\USERCOMP\ETBE\ETBEDATA.WDO]
Animal=CM02
Start Time: 12:33:50 07-15-2007
End Time: 12:33:51 07-15-2007
          WINNONLIN NONCOMPARTMENTAL ANALYSIS PROGRAM (V01.5A)
                          Core Version 290ct97
Listing of input commands
TITLE 1
0209408.007, ETBE, RTI-932, Rats AM01-DF05 Analysis 1
MODEL 200
DATE
TIME
NVARIABLES 5
NPOINTS 100
XNUMBER 2
YNUMBER 3
DTIME 0
NCONSTANTS 1
CONSTANTS 10.525
METHOD 2 'Linear trapezoidal
MISSING 'Missing'
NOBSERVATIONS 3
DATA 'WINNLIN.DAT'
BEGIN
```

0209408.007, ETBE, RTI-932, Rats AM01-DF05 Analysis 1

WINNONLIN NONCOMPARTMENTAL ANALYSIS PROGRAM

Noncompartmental Analysis for Extravascular Administration

Linear Trapezoidal Rule Used to Compute AUC, AUMC

Х		Y	Pred.	Res.	AUC	AUMC	WEIGHT
.0000	*	.0000 1.239	1.077	.1612	.0000	.0000 .3518E-01	1.000
.4906 .9953	* *	.5035 .2206	.6206 .2058	1171 .1485E-01	.3673 .5500	.1036 .2213	1.000 1.000

*) Starred values were included in estimation of Lambda_z.

 $@) \ \mbox{Note}$ - the concentration at time zero (DTIME) was added for extrapolation purposes

Dosing_time Rsq Rsq(adjusted) Corr(x:y) Tlag Tmax Cmax Nopoints_Lambda_z Tlast Clast AUClast Lambda_z Lambda_z_lower Lambda_z_lower Lambda_z_upper t1/2_Lambda_z AUCall AUCINF(observed) AUCINF(observed)/D AUC_%Extrap(obs.) Vz(observed)/F Cl(observed)/F Cl(observed)/F AUCINF(predicted) AUCINF(predicted) AUC_%Extrap(pred.) Vz(predicted)/F Cl(predicted)/F Cl(predicted)/F Cl(predicted)/F AUCLast	.0000 .9543 .9087 9769 .0000 .2383 1.2386 3 .9953 .2206 .5500 2.1872 .2383 .9953 .3169 .5500 .6599 .0618 15.4957 7.3931 16.1705 .6441 .0612 14.6051 7.4710 16.3409 .2213
Vz(predicted)/F Cl(predicted)/F	16.3409
AUMCINF(observed) AUMC_%Extrap(obs.) AUMCINF(predicted) AUMC_%Extrap(pred.) MRTlast MRTINF(observed)	.3678 39.8316 .3579 38.1742 .4023 .5651
MRTINF(predicted)	.5557

```
Input File: Data - [C:\WINNONLN\USERCOMP\ETBE\ETBEDATA.WDO]
Animal=CM03
Start Time: 12:33:51 07-15-2007
End Time: 12:33:52 07-15-2007
          WINNONLIN NONCOMPARTMENTAL ANALYSIS PROGRAM (V01.5A)
                          Core Version 290ct97
Listing of input commands
TITLE 1
0209408.007, ETBE, RTI-932, Rats AM01-DF05 Analysis 1
MODEL 200
DATE
TIME
NVARIABLES 5
NPOINTS 100
XNUMBER 2
YNUMBER 3
DTIME 0
NCONSTANTS 1
CONSTANTS 10.067
METHOD 2 'Linear trapezoidal
MISSING 'Missing'
NOBSERVATIONS 3
DATA 'WINNLIN.DAT'
BEGIN
```

0209408.007, ETBE, RTI-932, Rats AM01-DF05 Analysis 1

WINNONLIN NONCOMPARTMENTAL ANALYSIS PROGRAM

Noncompartmental Analysis for Extravascular Administration

Linear Trapezoidal Rule Used to Compute AUC, AUMC

Х		Y	Pred.	Res.	AUC	AUMC	WEIGHT
.0000 .2381 .4931 .9933	* * *	.0000 1.135 .5471 .2704	1.022 .6408 .2563	.1129 9375E-01 .1406E-01	.0000 .1351 .3496 .5541	.0000 .3217E-01 .1010 .2357	1.000 1.000 1.000

*) Starred values were included in estimation of Lambda_z.

 $@) \ \mbox{Note}$ - the concentration at time zero (DTIME) was added for extrapolation purposes

Dosing_time Rsq Rsq(adjusted) Corr(x:y) Tlag Tmax Cmax No. points Lambda_z	.0000 .9623 .9245 9810 .0000 .2381 1.1353 3
Tlast	.9933
Clast	.2704
AUClast	.5541
Lambda_z	1.8318
Lambda_z_lower	.2381
Lambda_z_upper	.9933
t1/2_Lambda_z	.3784
AUCall	.5541
AUCINF(observed)	.7017
AUCINF(observed)/D	.0697
AUC_%Extrap(obs.)	21.0340
Vz(observed)/F	7.8318
Cl(observed)/F	14.3462
AUCINF(predicted)	.6940 .0689
AUCINF(predicted)/D AUC_%Extrap(pred.)	20.1608
Vz(predicted)/F	7.9185
Cl(predicted)/F	14.5049
AUMClast	.2357
AUMCINF(observed)	.4629
AUMC_%Extrap(obs.)	49.0838
AUMCINF(predicted)	.4511
AUMC_%Extrap(pred.)	47.7502
MRTlast	.4253
MRTINF(observed)	.6596
MRTINF(predicted)	.6499

```
Input File: Data - [C:\WINNONLN\USERCOMP\ETBE\ETBEDATA.WDO]
Animal=CM08
Start Time: 12:33:52 07-15-2007
End Time: 12:33:53 07-15-2007
          WINNONLIN NONCOMPARTMENTAL ANALYSIS PROGRAM (V01.5A)
                          Core Version 290ct97
Listing of input commands
TITLE 1
0209408.007, ETBE, RTI-932, Rats AM01-DF05 Analysis 1
MODEL 200
DATE
TIME
NVARIABLES 5
NPOINTS 100
XNUMBER 2
YNUMBER 3
DTIME 0
NCONSTANTS 1
CONSTANTS 10.083
METHOD 2 'Linear trapezoidal
MISSING 'Missing'
NOBSERVATIONS 4
DATA 'WINNLIN.DAT'
BEGIN
```

Date: 07/15/2007 Time: 12:33:52

0209408.007, ETBE, RTI-932, Rats AM01-DF05 Analysis 1

WINNONLIN NONCOMPARTMENTAL ANALYSIS PROGRAM

Noncompartmental Analysis for Extravascular Administration

Linear Trapezoidal Rule Used to Compute AUC, AUMC

Х		Y	Pred.	Res.	AUC	AUMC	WEIGHT
.0000		.0000 .8336			.0000 .1139	.0000 .3114E-01	
.5261	*	.4362	.3840	.5216E-01	.2744	.8894E-01	1.000
.9919	*	.1903	.2293	3899E-01	.4203	.1863	1.000
1.996	*	.7999E-01	.7540E-01	.4589E-02	.5560	.3613	1.000

*) Starred values were included in estimation of Lambda_z.

 $@) \ \mbox{Note}$ - the concentration at time zero (DTIME) was added for extrapolation purposes

Dosing_time	.0000
Rsq	.9621
Rsq(adjusted)	.9243
Corr(x:y)	9809
Tlag	.0000
Tmax	.2733
Cmax	.8336
Nopoints_Lambda_z	3
Tlast	1.9961
Clast	.0800
AUClast	.5560
Lambda_z	1.1074
Lambda_z_lower	.5261
Lambda_z_upper	1.9961
t1/2_Lambda_z	.6259
AUCall	.5560
AUCINF(observed)	.6282
AUCINF(observed)/D	.0623
AUC_%Extrap(obs.)	11.4983
Vz(observed)/F	14.4933
Cl(observed)/F	16.0494
AUCINF(predicted)	.6241
AUCINF(predicted)/D	.0619
AUC_%Extrap(pred.)	10.9106
Vz(predicted)/F	14.5896
Cl(predicted)/F	16.1560
AUMClast	.3613
AUMCINF(observed)	.5707
AUMC_%Extrap(obs.)	36.6964
AUMCINF(predicted)	.5587
AUMC_%Extrap(pred.)	35.3351
MRTlast	.6498
MRTINF(observed)	.9084
MRTINF(predicted)	.8952

NORMAL ENDING

```
Input File: Data - [C:\WINNONLN\USERCOMP\ETBE\ETBEDATA.WDO]
Animal=DF01
Start Time: 12:33:53 07-15-2007
End Time: 12:33:54 07-15-2007
          WINNONLIN NONCOMPARTMENTAL ANALYSIS PROGRAM (V01.5A)
                          Core Version 290ct97
Listing of input commands
TITLE 1
0209408.007, ETBE, RTI-932, Rats AM01-DF05 Analysis 1
MODEL 200
DATE
TIME
NVARIABLES 5
NPOINTS 100
XNUMBER 2
YNUMBER 3
DTIME 0
NCONSTANTS 1
CONSTANTS 10.126
METHOD 2 'Linear trapezoidal
MISSING 'Missing'
NOBSERVATIONS 4
DATA 'WINNLIN.DAT'
BEGIN
```

Date: 07/15/2007 Time: 12:33:53

0209408.007, ETBE, RTI-932, Rats AM01-DF05 Analysis 1

WINNONLIN NONCOMPARTMENTAL ANALYSIS PROGRAM

Noncompartmental Analysis for Extravascular Administration

Linear Trapezoidal Rule Used to Compute AUC, AUMC

Х		Y	Pred.	Res.	AUC	AUMC	WEIGHT
.0000 .2436		.0000 1.255			.0000	.0000 .3725E-01	
.5014	*	.6526	.6075	.4507E-01	.3989	.1188	1.000
.9822	*	.3202	.3559	3572E-01	.6327	.2731	1.000
1.989	*	.1202	.1162	.4040E-02	.8545	.5519	1.000

*) Starred values were included in estimation of Lambda_z.

 $@) \ \mbox{Note}$ - the concentration at time zero (DTIME) was added for extrapolation purposes

Dosing_time Rsq	.0000 .9879 .9758
Rsq(adjusted) Corr(x:y)	9939
Tlag	.0000
Tmax	.2436
Cmax	1.2555
Nopoints_Lambda_z	3
Tlast	1.9892
Clast	.1202
AUClast	.8545
Lambda_z	1.1118
Lambda_z_lower	.5014
Lambda_z_upper	1.9892
t1/2_Lambda_z	.6234
AUCall	.8545
AUCINF(observed)	.9626
AUCINF(observed)/D	.0951
AUC_%Extrap(obs.)	11.2341
Vz(observed)/F	9.4613
Cl(observed)/F	10.5191
AUCINF(predicted)	.9590
AUCINF(predicted)/D	.0947
AUC_%Extrap(pred.)	10.8978
Vz(predicted)/F	9.4972
Cl(predicted)/F	10.5589
AUMClast	.5519
AUMCINF(observed)	.8643
AUMC_%Extrap(obs.)	36.1437
AUMCINF(predicted)	.8538
AUMC_%Extrap(pred.)	35.3587
MRTlast	.6459
MRTINF(observed)	.8978
MRTINF(predicted)	.8903

NORMAL ENDING

```
Input File: Data - [C:\WINNONLN\USERCOMP\ETBE\ETBEDATA.WDO]
Animal=DF02
Start Time: 12:33:54 07-15-2007
End Time: 12:33:55 07-15-2007
          WINNONLIN NONCOMPARTMENTAL ANALYSIS PROGRAM (V01.5A)
                          Core Version 290ct97
Listing of input commands
TITLE 1
0209408.007, ETBE, RTI-932, Rats AM01-DF05 Analysis 1
MODEL 200
DATE
TIME
NVARIABLES 5
NPOINTS 100
XNUMBER 2
YNUMBER 3
DTIME 0
NCONSTANTS 1
CONSTANTS 10.302
METHOD 2 'Linear trapezoidal
MISSING 'Missing'
NOBSERVATIONS 3
DATA 'WINNLIN.DAT'
BEGIN
```

Date: 07/15/2007 Time: 12:33:54

0209408.007, ETBE, RTI-932, Rats AM01-DF05 Analysis 1

WINNONLIN NONCOMPARTMENTAL ANALYSIS PROGRAM

Noncompartmental Analysis for Extravascular Administration

Linear Trapezoidal Rule Used to Compute AUC, AUMC

Х		Y	Pred.	Res.	AUC	AUMC	WEIGHT
.0000 .2442 .4761 .9783	* * *	.0000 1.046 .5544 .2589	.9611 .6273 .2490	.8478E-01 7292E-01 .9914E-02	.0000 .1277 .3133 .5175	.0000 .3118E-01 .9140E-01 .2213	1.000 1.000 1.000

*) Starred values were included in estimation of Lambda_z.

 $@) \ \mbox{Note}$ - the concentration at time zero (DTIME) was added for extrapolation purposes

Dosing_time Rsq Rsq(adjusted) Corr(x:y) Tlag Tmax Cmax Nopoints_Lambda_z Tlast Clast AUClast Lambda_z Lambda_z_lower Lambda_z_lower Lambda_z_upper t1/2_Lambda_z AUCall AUCINF(observed) AUCINF(observed) AUCINF(observed)/D AUC_%Extrap(obs.) Vz(observed)/F Cl(observed)/F Cl(observed)/F AUCINF(predicted) AUCINF(predicted) AUCINF(predicted)/D AUC_%Extrap(pred.) Vz(predicted)/F Cl(predicted)/F Cl(predicted)/F AUMCINF(observed)	.0000 .9755 .9510 9877 .0000 .2442 1.0459 3 .9783 .2589 .5175 1.8395 .2442 .9783 .3768 .5175 .6583 .0639 21.3847 8.5079 15.6503 .6529 .0634 20.7357 8.5781 15.7795 .2213 .4355
Cl(predicted)/F	15.7795
AUMClast	.2213
AUMCINF(observed)	.4355
AUMC_%Extrap(obs.)	49.1905
AUMCINF(predicted)	.4273
AUMC_%Extrap(pred.)	48.2151
MRTlast	.4276
MRTINF(observed)	.6616
MRTINF(predicted)	.6545
incitin (preateced)	.0345

NORMAL ENDING

```
Input File: Data - [C:\WINNONLN\USERCOMP\ETBE\ETBEDATA.WDO]
Animal=DF04
Start Time: 12:33:55 07-15-2007
End Time: 12:33:56 07-15-2007
          WINNONLIN NONCOMPARTMENTAL ANALYSIS PROGRAM (V01.5A)
                          Core Version 290ct97
Listing of input commands
TITLE 1
0209408.007, ETBE, RTI-932, Rats AM01-DF05 Analysis 1
MODEL 200
DATE
TIME
NVARIABLES 5
NPOINTS 100
XNUMBER 2
YNUMBER 3
DTIME 0
NCONSTANTS 1
CONSTANTS 10.122
METHOD 2 'Linear trapezoidal
MISSING 'Missing'
NOBSERVATIONS 4
DATA 'WINNLIN.DAT'
BEGIN
```

Date: 07/15/2007 Time: 12:33:55

0209408.007, ETBE, RTI-932, Rats AM01-DF05 Analysis 1

WINNONLIN NONCOMPARTMENTAL ANALYSIS PROGRAM

Noncompartmental Analysis for Extravascular Administration

Linear Trapezoidal Rule Used to Compute AUC, AUMC

Х		Y	Pred.	Res.	AUC	AUMC	WEIGHT
.0000 .2839		.0000 1.008			.0000	.0000 .4061E-01	
.4981	*	.4603	.4292	.3110E-01	.3002	.9579E-01	1.000
.9722	*	.2453	.2714	2614E-01	.4675	.2067	1.000
2.032	*	.1006	.9753E-01	.3102E-02	.6508	.4413	1.000

*) Starred values were included in estimation of Lambda_z.

 $@) \ \mbox{Note}$ - the concentration at time zero (DTIME) was added for extrapolation purposes

Dosing_time	.0000
Rsq	.9862
Rsq(adjusted)	.9724
Corr(x:y)	9931
Tlag	.0000
Tmax	.2839
Cmax	1.0077
Nopoints_Lambda_z	3
Tlast	2.0317
Clast	.1006
AUClast	.6508
Lambda_z	.9662
Lambda_z_lower	.4981
Lambda_z_lower	2.0317
Lambda_z_lower	.7174
Lambda_z_upper	.6508
t1/2_Lambda_z	.7549
AUCall	.0746
AUCINF(observed)	13.7965
AUCINF(observed)/D	13.8773
AUC_%Extrap(obs.)	13.4080
Vz(observed)/F	.7517
Cl(observed)/F	.0743
Cl(observed)/F	13.4283
AUCINF(predicted)	13.9366
AUCINF(predicted)/D	13.4283
AUC_%Extrap(pred.)	.3.9366
Vz(predicted)/F	13.4653
Cl(predicted)/F	.4413
AUMClast	.7607
AUMCINF(observed)	41.9869
AUMC_%Extrap(obs.)	.7509
AUMCINF(observed)	.7607
AUMC_%Extrap(obs.)	41.9869
AUMCINF(predicted)	.7509
AUMC_%Extrap(pred.)	41.2262
MRTlast	.6781
MRTINF(observed)	1.0077
MRTINF(predicted)	.9989

NORMAL ENDING

```
Input File: Data - [C:\WINNONLN\USERCOMP\ETBE\ETBEDATA.WDO]
Animal=DF05
Start Time: 12:33:57 07-15-2007
End Time: 12:33:57 07-15-2007
          WINNONLIN NONCOMPARTMENTAL ANALYSIS PROGRAM (V01.5A)
                          Core Version 290ct97
Listing of input commands
TITLE 1
0209408.007, ETBE, RTI-932, Rats AM01-DF05 Analysis 1
MODEL 200
DATE
TIME
NVARIABLES 5
NPOINTS 100
XNUMBER 2
YNUMBER 3
DTIME 0
NCONSTANTS 1
CONSTANTS 10.239
METHOD 2 'Linear trapezoidal
MISSING 'Missing'
NOBSERVATIONS 3
DATA 'WINNLIN.DAT'
BEGIN
```

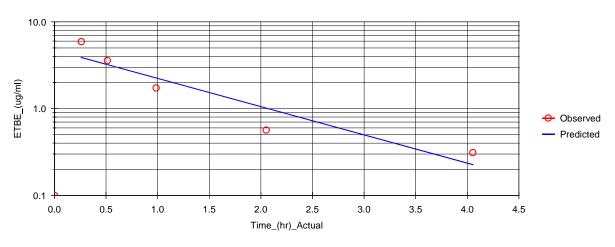
Date: 07/15/2007 Time: 12:33:56

0209408.007, ETBE, RTI-932, Rats AM01-DF05 Analysis 1

WINNONLIN NONCOMPARTMENTAL ANALYSIS PROGRAM

Noncompartmental Analysis for Extravascular Administration

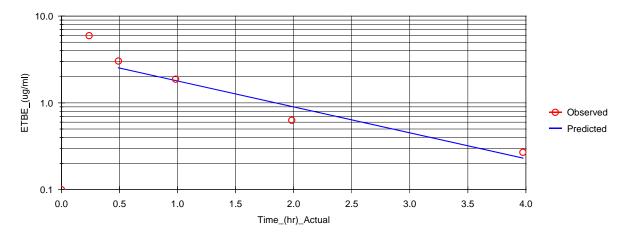
Linear Trapezoidal Rule Used to Compute AUC, AUMC

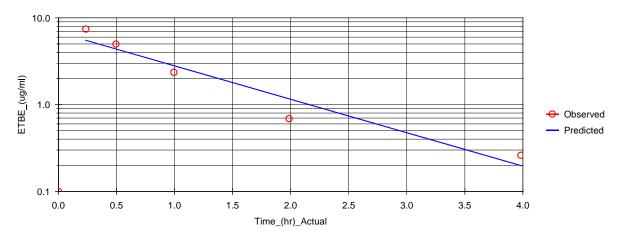

Х		Y	Pred.	Res.	AUC	AUMC	WEIGHT
.0000 .3975 .4908 .9517	* * *	.0000 .2818 .3078 .2686	.2952 .2910 .2711	1344E-01 .1678E-01 2547E-02	.8351E-01	.0000 .2226E-01 .3454E-01 .1282	1.000 1.000 1.000

*) Starred values were included in estimation of Lambda_z.

 $@) \ \mbox{Note}$ - the concentration at time zero (DTIME) was added for extrapolation purposes

Dosing_time Rsq Rsq(adjusted) Corr(x:y) Tlag Tmax Cmax	.0000 .4346 1309 6592 .0000 .4908 .3078
Nopoints_Lambda_z	3
Tlast Clast	.9517 .2686
AUClast	.2000
Lambda z	.1536
Lambda z lower	.3975
Lambda_z_upper	.9517
t1/2_Lambda_z	4.5134
AUCall	.2163
AUCINF(observed)	1.9651
AUCINF(observed)/D	.1919
AUC_%Extrap(obs.)	88.9924
Vz(observed)/F	33.9275
Cl(observed)/F	5.2104
AUCINF(predicted)	1.9817
AUCINF(predicted)/D	.1935
AUC_%Extrap(pred.)	89.0845
Vz(predicted)/F	33.6436
Cl(predicted)/F	5.1668
AUMClast	.1282
AUMCINF(observed)	13.1797
AUMC_%Extrap(obs.)	99.0270 13.3035
AUMCINF(predicted) AUMC_%Extrap(pred.)	99.0361
MRTlast	.5928
MRTINF(observed)	6.7069
MRTINF(ODSelved) MRTINF(predicted)	6.7132
	0.,102

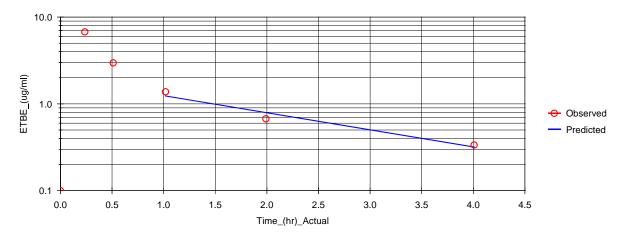

NORMAL ENDING

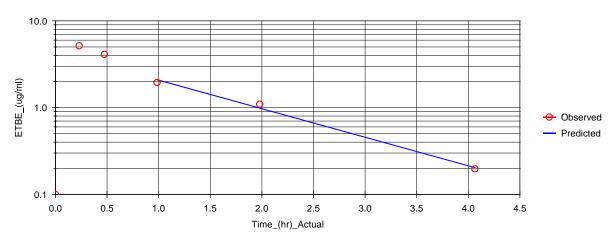


Animal=AM01 Rsq=0.8849 Rsq(adjusted)=0.8465 t1/2_Lambda_z=0.9249

0209408.007, ETBE, RTI-932, Rats AM01-DF05 Analysis 1

Animal=AM02 Rsq=0.9465 Rsq(adjusted)=0.9197 t1/2_Lambda_z=1.0076

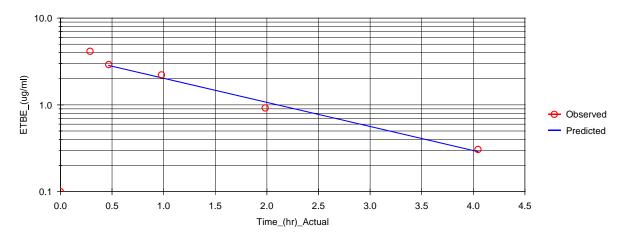


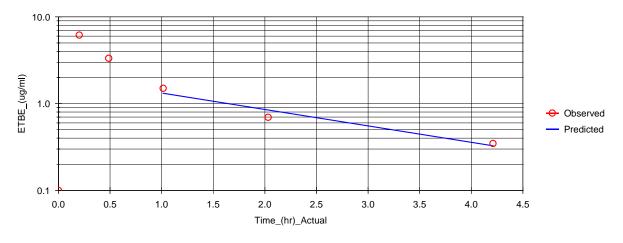


Animal=AM03 Rsq=0.9373 Rsq(adjusted)=0.9164 t1/2_Lambda_z=0.7813

0209408.007, ETBE, RTI-932, Rats AM01-DF05 Analysis 1

Animal=AM04 Rsq=0.9569 Rsq(adjusted)=0.9139 t1/2_Lambda_z=1.5302

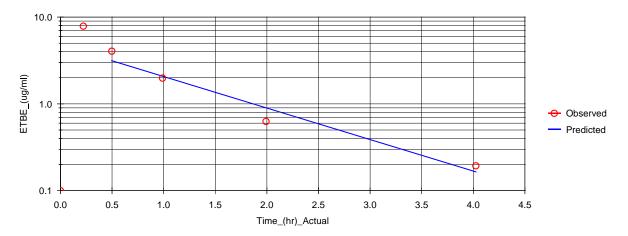


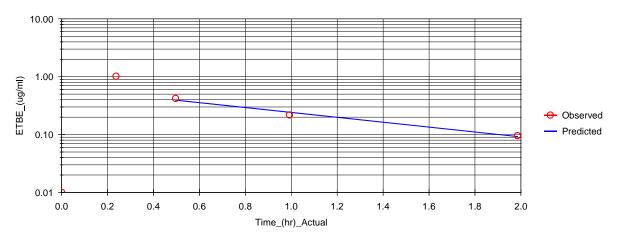


Animal=BF01 Rsq=0.9938 Rsq(adjusted)=0.9877 t1/2_Lambda_z=0.9152

0209408.007, ETBE, RTI-932, Rats AM01-DF05 Analysis 1

Animal=BF02 Rsq=0.9889 Rsq(adjusted)=0.9834 t1/2_Lambda_z=1.0851

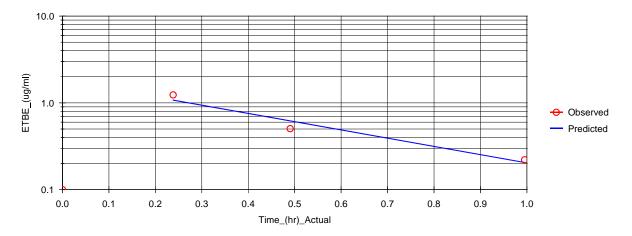


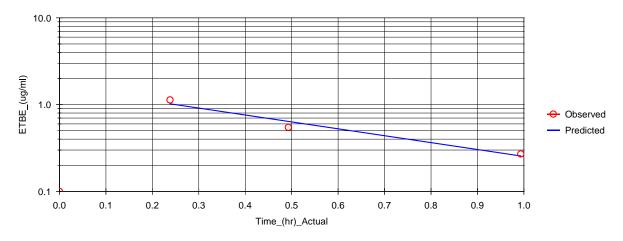


Animal=BF03 Rsq=0.946 Rsq(adjusted)=0.8919 t1/2_Lambda_z=1.5892

0209408.007, ETBE, RTI-932, Rats AM01-DF05 Analysis 1

Animal=BF04 Rsq=0.9582 Rsq(adjusted)=0.9372 t1/2_Lambda_z=0.829

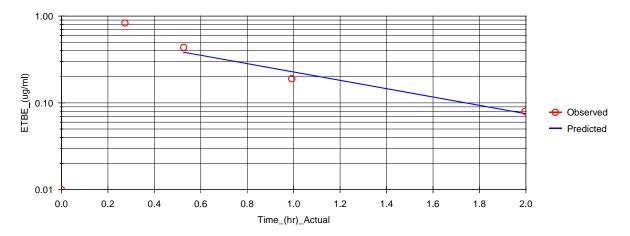


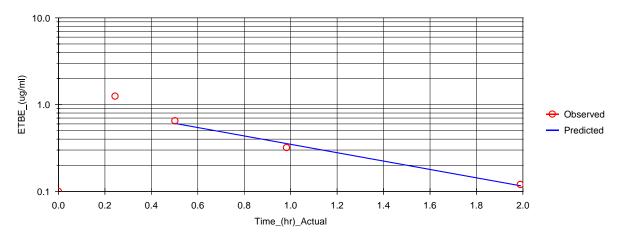


Animal=CM01 Rsq=0.9844 Rsq(adjusted)=0.9687 t1/2_Lambda_z=0.7124

0209408.007, ETBE, RTI-932, Rats AM01-DF05 Analysis 1

Animal=CM02 Rsq=0.9543 Rsq(adjusted)=0.9087 t1/2_Lambda_z=0.3169

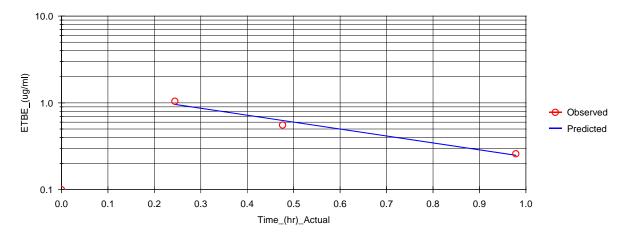


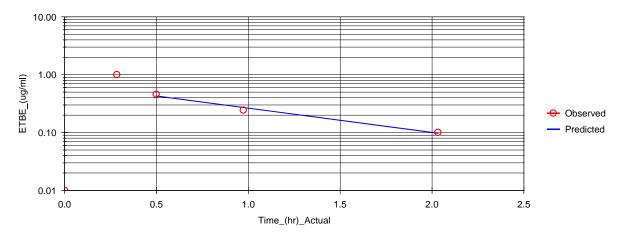


Animal=CM03 Rsq=0.9623 Rsq(adjusted)=0.9245 t1/2_Lambda_z=0.3784

0209408.007, ETBE, RTI-932, Rats AM01-DF05 Analysis 1

Animal=CM08 Rsq=0.9621 Rsq(adjusted)=0.9243 t1/2_Lambda_z=0.6259

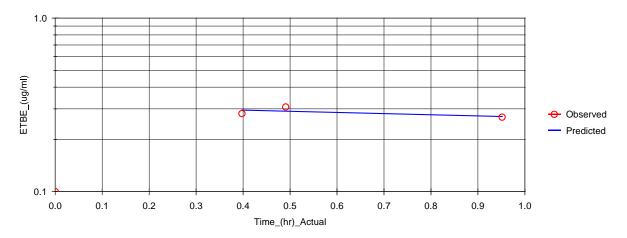




Animal=DF01 Rsq=0.9879 Rsq(adjusted)=0.9758 t1/2_Lambda_z=0.6234

0209408.007, ETBE, RTI-932, Rats AM01-DF05 Analysis 1

Animal=DF02 Rsq=0.9755 Rsq(adjusted)=0.951 t1/2_Lambda_z=0.3768



Animal=DF04 Rsq=0.9862 Rsq(adjusted)=0.9724 t1/2_Lambda_z=0.7174

0209408.007, ETBE, RTI-932, Rats AM01-DF05 Analysis 1

Animal=DF05 Rsq=0.4346 Rsq(adjusted)=-0.1309 t1/2_Lambda_z=4.5134

Appendix E

Dose Formulation Analysis

Dose formulation analysis was conducted by gas chromatography with flame ionization detection as described in Project Specific Analytical Method for Analysis of Ethyl Tertiary Butyl Ether in Oral Dose Formulations, AM-D0209408.007.0.

Prior to conduct of the in-life portion of the study, the method was used to determine the stability of mock dose formulations at both the low dose (1 mg/ml) and the high dose (5 mg/ml). The dose solutions were found to be stable stored both at room temperature for up to three days and in a refrigerator for 1 day (Table 1).

The dose formulation analysis results are tabulated for each dose solution in Tables 2 - 5. The associated calibration curves and data are shown in Figures 1 - 4.

The Project Specific Analytical Method for Analysis of Ethyl Tertiary Butyl Ether in Oral Dose Formulations, AM-D0209408.007.0 is shown at the end of this Appendix.

Table 1. Dose formulation stability.

Mock Dose.	Storage condition	Concentration of ETBE (µg/ml)	SD	Stability (%) ^a
1.0 mg/mL	0 day	1141	32	-
1.0 mg/mL	Ca. 4ºC, 1 day	1156	60	101
1.0 mg/mL	RT⁵, 1 day	1166	16	102
1.0 mg/mL	RT, 2 days	1167	14	102
1.0 mg/mL	RT, 3days	1165	24	102
5.0 mg/mL	0 day	5743	533	-
5.0 mg/mL	Ca. 4ºC, 1 day	5624	83	97.9
5.0 mg/mL	RT, 1 day	5711	102	99.4
5.0 mg/mL	RT, 2 days	5539	167	96.6
5.0 mg/mL	RT, 3days	5250	106	91.6

^a Calculated as a percentage of the day 0 value.

^b RT = Room Temperature

	Sample ID	Name	RT	Area	Dilution	Amount	Units	Calibration Id
1	12307-61-1	ETBE	4.052	2196	10.46000	5283.001	μg/mL	5249
2	12307-61-1	ETBE	4.050	2126	10.46000	5111.165	μg/mL	5249
3	12307-61-2	ETBE	4.049	2215	10.42000	5309.806	μg/mL	5249
4	12307-61-2	ETBE	4.050	2213	10.42000	5304.189	μg/mL	5249
5	12307-61-3	ETBE	4.050	2195	10.51000	5304.712	μg/mL	5249
6	12307-61-3	ETBE	4.050	2120	10.51000	5119.573	μg/mL	5249
Mean						5238.8		
Std. Dev.						96.0		
%RSD						1.8		

	Sample ID	Name	RT	Area	Dilution	Amount	Units	Calibration Id
1	12307-64-1	ETBE	4.051	2295	10.22000	5366.492	μg/ml	5900
2	12307-64-1	ETBE	4.052	2230	10.22000	5213.326	μ g/ml	5900
3	12307-64-2	ETBE	4.052	2143	10.78000	5282.676	μ g/ml	5900
4	12307-64-2	ETBE	4.051	2181	10.78000	5377.548	μ g/ml	5900
5	12307-64-3	ETBE	4.050	2161	10.58000	5227.800	μg/ml	5900
6	12307-64-3	ETBE	4.052	2169	10.58000	5247.629	μg/ml	5900
Mean						5285.9		
Std. Dev.						70.7		
%RSD						1.3		

E-5

Final Report

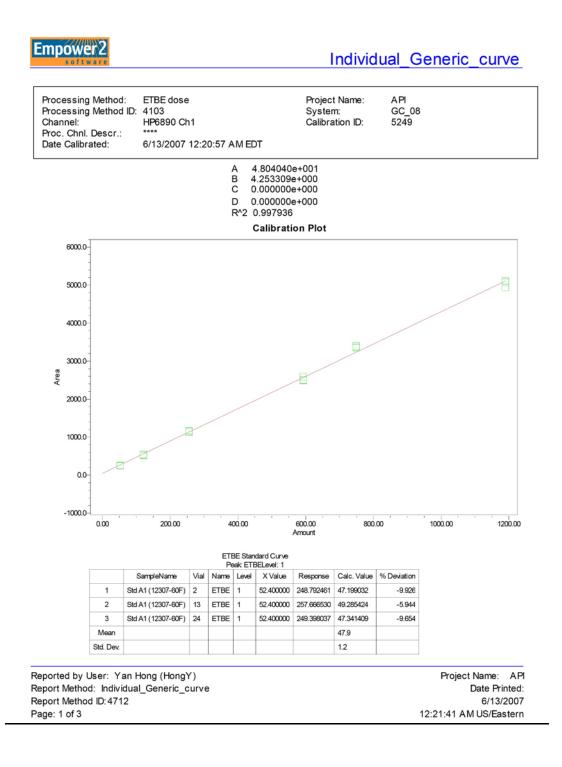

	Sample ID	Name	RT	Area	Dilution	Amount	Units	Calibration Id
1	12307-81-1	ETBE	4.053	468	9.78000	1152.140	μg/mL	5666
2	12307-81-1	ETBE	4.051	471	918000	1158.194	μg/mL	5666
3	12307-81-2	ETBE	4.052	426	10.56000	1143.368	μg/mL	5666
4	12307-81-2	ETBE	4.051	428	10.56000	1148.662	μg/mL	5666
5	12307-81-3	ETBE	4.049	468	9.72000	1146.016	μg/mL	5666
6	12307-81-3	ETBE	4.050	467	9.72000	1142.978	μg/mL	5666
Mean						1148.6		
Std. Dev.						5.8		
%RSD						0.5		

Table 4. Dose formulation analysis for low dose female rats.

	Sample ID	Name	RT	Area	Dilution	Amount	Units	Calibration Id
1	12307-84-1	ETBE	4.052	443	10.44000	986.780	μg/mL	5830
2	12307-84-1	ETBE	4.053	444	10.44000	989.869	μg/mL	5830
3	12307-84-2	ETBE	4.053	444	10.61000	1005.417	μg/mL	5830
4	12307-84-2	ETBE	4.052	433	10.61000	981.594	μg/mL	5830
5	12307-84-3	ETBE	4.052	423	10.97000	989.709	μg/mL	5830
6	12307-84-3	ETBE	4.053	422	10.97000	987.555	μg/mL	5830
Mean						990.2		
Std. Dev.						8.1		
%RSD						0.8		

Table 5. Dose formulation analysis for low dose female rats.

Figure 1. Calibration Report 5249 for Analysis of ETBE Dose Formulation.

Figure 1 (continued). Calibration Report 5249 for Analysis of ETBE Dose Formulation.

					dard Curve 3ELevel: 1			
	SampleName	Vial	Name	Level	X Value	Response	Calc. Value	% Deviation
% RSD							2.4	
					ndard Curve BELevel: 2			
	SampleName	Vial	Name	Level	X Value	Response	Calc. Value	% Deviatio
1	Std B1 (12307-60E)	14	ETBE	2	121.000000	547.646558	117.462940	-2.92
2	Std B1 (12307-60E)	3	ETBE	2	121.000000	516.619790	110.168203	-8.95
3	Std B1 (12307-60E)	25	ETBE	2	121.000000	528.237340	112.899618	-6.69
Mean							113.5	
Std. Dev.							3.7	
% RSD							3.2	

ETBE Standard Curve

			F	'eak Ei	BELEVEI: 3			
	SampleName	Vial	Name	Level	X Value	Response	Calc. Value	% Deviation
1	Std A2 (12307-60D)	15	ETBE	3	255.000000	1169.445528	263.654764	3.394
2	Std A2 (12307-60D)	4	ETBE	3	255.000000	1130.795409	254.567693	-0.170
3	Std A2 (12307-60D)	26	ETBE	3	255.000000	1162.326639	261.981034	2.738
Mean							260.1	
Std. Dev.							4.8	
% RSD							1.9	

ETBE Standard Curve Peak ETBELevel: 4

	SampleName	Vial	Name	Level	X Value	Response	Calc. Value	% Deviation
1	Std B2 (12307-60C)	5	ETBE	4	593.000000	2502.383474	577.043236	-2.691
2	Std B2 (12307-60C)	16	ETBE	4	593.000000	2586.481034	596.815504	0.643
3	Std B2 (12307-60C)	27	ETBE	4	593.000000	2489.833353	574.092564	-3.188
Mean							582.7	
Std. Dev.							12.4	
% RSD							2.1	

ETBE Standard Curve

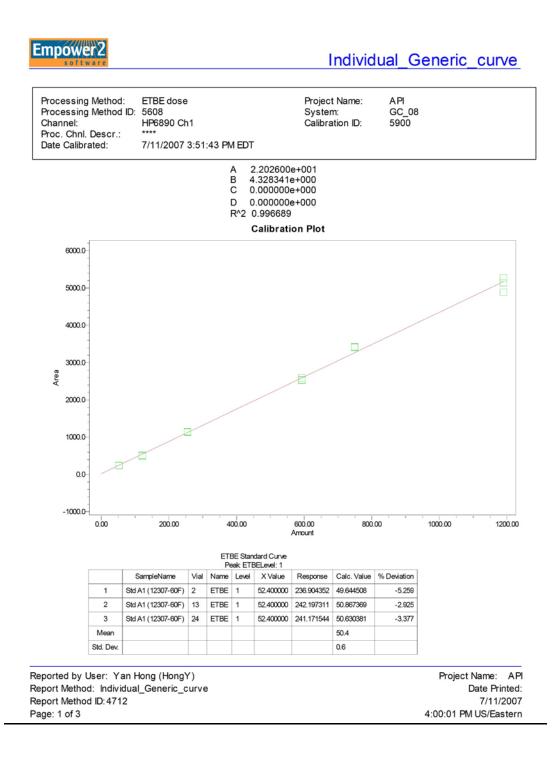
	SampleName	Vial	Name	Level	X Value	Response	Calc. Value	% Deviation
1	Std A3 (12307-60B)	6	ETBE	5	749.000000	3362.793287	779.335112	4.050
2	Std A3 (12307-60B)	17	ETBE	5	749.000000	3355.661034	777.658240	3.826
3	Std A3 (12307-60B)	28	ETBE	5	749.000000	3402.924743	788.770461	5.310
Mean							781.9	
Std. Dev.							6.0	
% RSD							0.8	

ETBE Standard Curve

	SampleName	Vial	Name	Level	X Value	Response	Calc. Value	% Deviation
1	Std B3 (12307-60A)	18	ETBE	6	1190.000000	5110.802619	1190.311463	0.026
2	Std B3 (12307-60A)	7	ETBE	6	1190.000000	4945.335277	1151.408259	-3.243

Reported by User: Yan Hong (HongY)	Project Name: API
Report Method: Individual_Generic_curve	Date Printed:
Report Method ID: 4712	6/13/2007
Page: 2 of 3	12:21:41 AM US/Eastern

Figure 1 (continued). Calibration Report 5249 for Analysis of ETBE Dose Formulation.


ETBE Standard Curve
Peak FTBELevel: 6

	SampleName	Vial	Name	Level	X Value	Response	Calc. Value	% Deviation
3	Std B3 (12307-60A)	29	ETBE	6	1190.000000	5072.070212	1181.205046	-0.739
Mean							1174.3	
Std. Dev.							20.3	
% RSD							1.7	

Reported by User: Yan Hong (HongY)
Report Method: Individual_Generic_curve
Report Method ID:4712
Page: 3 of 3

Project Name: API Date Printed: 6/13/2007 12:21:41 AM US/Eastern

Figure 2. Calibration Report 5900 for Analysis of ETBE Dose Formulation.

Figure 2 (continued). Calibration Report 5900 for Analysis of ETBE Dose Formulation.

ETBE Standard Curve

			P	eak ETE	BELevel: 1			
	SampleName	Vial	Name	Level	X Value	Response	Calc. Value	% Deviation
% RSD							1.3	
			_		ndard Curve			

			P	eak ET	BELevel: 2			
	SampleName	Vial	Name	Level	X Value	Response	Calc. Value	% Deviation
1	Std B1 (12307-60E)	14	ETBE	2	121.000000	517.325560	114.431737	-5.428
2	Std B1 (12307-60E)	3	ETBE	2	121.000000	509.245548	112.564968	-6.971
3	Std B1 (12307-60E)	25	ETBE	2	121.000000	483.340189	106.579913	-11.917
Mean							111.2	
Std. Dev.							4.1	
% RSD							3.7	

ETBE Standard Curve

	SampleName	Vial	Name	Level	X Value	Response	Calc. Value	% Deviation
1	Std A2 (12307-60D)	4	ETBE	3	255.000000	1141.163054	258.560288	1.396
2	Std A2 (12307-60D)	15	ETBE	3	255.000000	1148.257649	260.199391	2.039
3	Std A2 (12307-60D)	26	ETBE	3	255.000000	1133.675328	256.830358	0.718
Mean							258.5	
Std. Dev.							1.7	
% RSD							0.7	

ETBE Standard Curve

			F	eak ET	BELevel: 4			
	SampleName	Vial	Name	Level	X Value	Response	Calc. Value	% Deviation
1	Std B2 (12307-60C)	16	ETBE	4	593.000000	2586.395727	592.460211	-0.091
2	Std B2 (12307-60C)	5	ETBE	4	593.000000	2521.348095	577.431905	-2.625
3	Std B2 (12307-60C)	27	ETBE	4	593.000000	2529.736508	579.369925	-2.298
Mean							583.1	
Std. Dev.							8.2	
% RSD							1.4	

ETBE Standard Curve

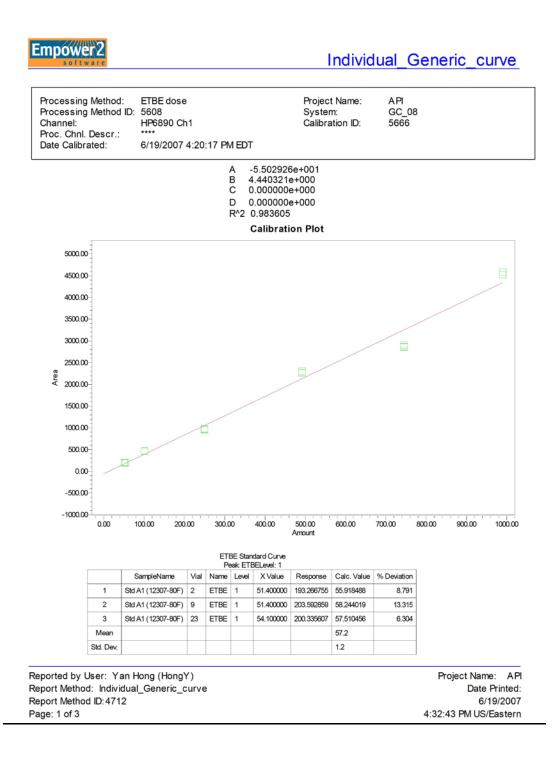
	SampleName	Vial	Name	Level	X Value	Response	Calc. Value	% Deviation
1	Std A3 (12307-60B)	6	ETBE	5	749.000000	3426.341318	786.517385	5.009
2	Std A3 (12307-60B)	17	ETBE	5	749.000000	3405.086065	781.606669	4.353
3	Std A3 (12307-60B)	28	ETBE	5	749.000000	3413.845925	783.630506	4.624
Mean							783.9	
Std. Dev.							2.5	
% RSD							0.3	

ETBE Standard Curve

	SampleName	Vial			X Value	Response	Calc. Value	% Deviation
1	Std B3 (12307-60A)	18	ETBE	6	1190.000000	4886.636104	1123.897189	-5.555
2	Std B3 (12307-60A)	7	ETBE	6	1190.000000	5139.043814	1182.212308	-0.654

Reported by User: Yan Hong (HongY)	Project Name: API
Report Method: Individual_Generic_curve	Date Printed:
Report Method ID: 4712	7/11/2007
Page: 2 of 3	4:00:01 PM US/Eastern

Figure 2 (continued). Calibration Report 5900 for Analysis of ETBE Dose Formulation.


ETBE Standard Curve

	SampleName	Vial	Name	Level	X Value	Response	Calc. Value	% Deviation
3	Std B3 (12307-60A)	29	ETBE	6	1190.000000	5275.614582	1213.764991	1.997
Mean							1173.3	
Std. Dev.							45.6	
% RSD							3.9	

Reported by User: Yan Hong (HongY)
Report Method: Individual_Generic_curve
Report Method ID: 4712
Page: 3 of 3

Project Name: API Date Printed: 7/11/2007 4:00:01 PM US/Eastern

Figure 3. Calibration Report 5666 for Analysis of ETBE Dose Formulation.

Figure 3 (continued). Calibration Report 5666 for Analysis of ETBE Dose Formulation.

					dard Curve ELevel: 1			
	SampleName	Vial	Name	Level	X Value	Response	Calc. Value	% Deviation
% RSD							2.1	

ETBE Standard Curve

	SampleName	Vial	Name	Level	X Value	Response	Calc. Value	% Deviation
1	Std B1 (12307-80E)	10	ETBE	2	101.000000	466.282934	117.404178	16.242
2	Std B1 (12307-80E)	3	ETBE	2	101.000000	461.324653	116.287529	15.136
3	Std B1 (12307-80E)	24	ETBE	2	101.000000	462.827733	116.626036	15.471
Mean							116.8	
Std. Dev.							0.6	
% RSD							0.5	

ETBE Standard Curve

			P	Bak Ell	BELevel: 3			
	SampleName	Vial	Name	Level	X Value	Response	Calc. Value	% Deviation
1	Std A2 (12307-80D)	4	ETBE	3	250.000000	954.576572	227.372282	-9.051
2	Std A2 (12307-80D)	11	ETBE	3	250.000000	968.370754	230.478856	-7.808
3	Std A2 (12307-80D)	25	ETBE	3	250.000000	978.086279	232.666879	-6.933
Mean							230.2	
Std. Dev.							2.7	
% RSD							1.2	

ETBE Standard Curve

	SampleName	Vial	Name	Level	X Value	Response	Calc. Value	% Deviation
1	Std B2 (12307-80C)	12	ETBE	4	492.000000	2274.030993	524.525245	6.611
2	Std B2 (12307-80C)	5	ETBE	4	492.000000	2263.397689	522.130529	6.124
3	Std B2 (12307-80C)	26	ETBE	4	492.000000	2302.573752	530.953330	7.917
Mean							525.9	
Std. Dev.							4.6	
% RSD							0.9	

ETBE Standard Curve Reak ETBEL evel: 5

				Car LI	DELEVEL J			
	SampleName	Vial	Name	Level	X Value	Response	Calc. Value	% Deviation
1	Std A3 (12307-80B)	6	ETBE	5	745.000000	2906.166222	666.887764	-10.485
2	Std A3 (12307-80B)	13	ETBE	5	745.000000	2864.179030	657.431872	-11.754
3	Std A3 (12307-80B)	27	ETBE	5	745.000000	2855.824799	655.550425	-12.007
Mean							660.0	
Std. Dev.							6.1	
% RSD							0.9	

ETBE Standard Curve

		Peak ET DELEver: 0												
	SampleName	Vial	Name	Level	X Value	Response	Calc. Value	% Deviation						
1	Std B3 (12307-80A)	14	ETBE	6	990.000000	4583.189080	1044.568344	5.512						
2	Std B3 (12307-80A)	7	ETBE	6	990.000000	4525.220033	1031.513195	4.193						

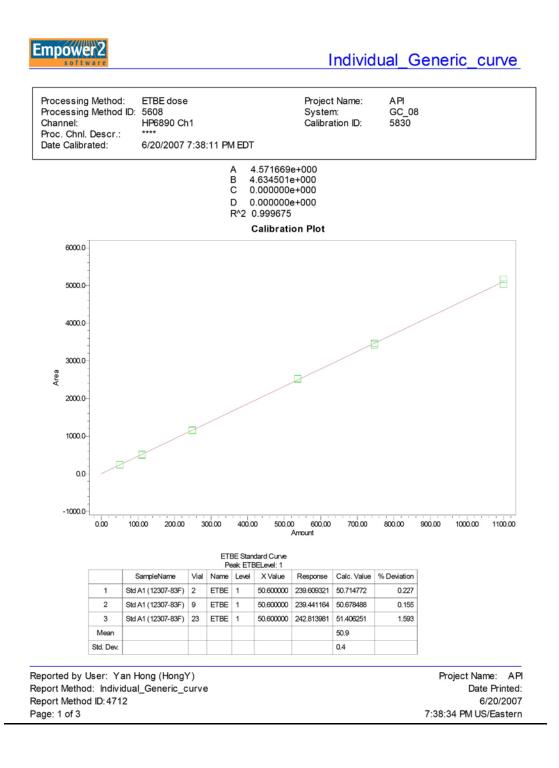

Reported by User: Yan Hong (HongY) Report Method: Individual_Generic_curve Report Method ID:4712 Page: 2 of 3 Project Name: API Date Printed: 6/19/2007 4:32:43 PM US/Eastern

Figure 3 (continued). Calibration Report 5666 for Analysis of ETBE Dose Formulation.

			_		andard Curve TBELevel: 6			
	SampleName	Vial	Name	Level	X Value	Response	Calc. Value	% Deviation
3	Std B3 (12307-80A)	28	ETBE	6	990.000000	4584.353459	1044.830572	5.538
Mean							1040.3	
Std. Dev.							7.6	
% RSD							0.7	

Reported by User: Yan Hong (HongY)	Project Name: API
Report Method: Individual_Generic_curve	Date Printed:
Report Method ID: 4712	6/19/2007
Page: 3 of 3	4:32:43 PM US/Eastern

Figure 4. Calibration Report 5830 for Analysis of ETBE Dose Formulation.

Figure 4 (continued) . Calibration Report 5830 for Analysis of ETBE Dose Formulation.

					dard Curve 3ELevel: 1			
	SampleName	Vial	Name	Level	X Value	Response	Calc. Value	% Deviation
% RSD							0.8	
			_		ndard Curve BELevel: 2			
	SampleName	Vial	Name	Level	X Value	Response	Calc. Value	% Deviation
1	Std B1 (12307-83E)	10	ETBE	2	111.000000	519.929539	111.200298	0.18
2	Std B1 (12307-83E)	3	ETBE	2	111.000000	510.270910	109.116227	-1.6
3	Std B1 (12307-83E)	24	ETBE	2	111.000000	491.623163	105.092547	-5.3
Mean							108.5	
Std. Dev.							3.1	
% RSD							2.9	

ETBE Standard Curve

			F	eak ET	BELevel: 3			
	SampleName	Vial	Name	Level	X Value	Response	Calc. Value	% Deviation
1	Std A2 (12307-83D)	4	ETBE	3	249.000000	1159.481617	249.198348	0.080
2	Std A2 (12307-83D)	11	ETBE	3	249.000000	1145.540838	246.190305	-1.128
3	Std A2 (12307-83D)	25	ETBE	3	249.000000	1165.911059	250.585648	0.637
Mean							248.7	
Std. Dev.							2.2	
% RSD							0.9	

ETBE Standard Curve

	SampleName	Vial	Name	Level	X Value	Response	Calc. Value	% Deviation
1	Std B2 (12307-83C)	12	ETBE	4	537.000000	2530.057094	544.931488	1.477
2	Std B2 (12307-83C)	5	ETBE	4	537.000000	2516.418914	541.988738	0.929
3	Std B2 (12307-83C)	26	ETBE	4	537.000000	2524.557833	543.744896	1.256
Mean							543.6	
Std. Dev.							1.5	
% RSD							0.3	

ETBE Standard Curve

			F	Peak ET	BELevel: 5	-		
	SampleName	Vial	Name	Level	X Value	Response	Calc. Value	% Deviation
1	Std A3 (12307-83B)	6	ETBE	5	747.000000	3461.163773	745.839141	-0.155
2	Std A3 (12307-83B)	13	ETBE	5	747.000000	3423.928419	737.804758	-1.231
3	Std A3 (12307-83B)	27	ETBE	5	747.000000	3465.436370	746.761052	-0.032
Mean							743.5	
Std. Dev.							4.9	
% RSD							0.7	

ETBE Standard Curve

Peak ETBELevel: 6								
	SampleName	Vial	Name	Level	X Value	Response	Calc. Value	% Deviation
1	Std B3 (12307-83A)	14	ETBE	6	1100.000000	5164.906878	1113.460849	1.224
2	Std B3 (12307-83A)	7	ETBE	6	1100.000000	5033.404520	1085.086195	-1.356

Reported by User: Yan Hong (HongY) Report Method: Individual_Generic_curve Report Method ID:4712 Page: 2 of 3 Project Name: API Date Printed: 6/20/2007 7:38:34 PM US/Eastern

Figure 4 (continued). Calibration Report 5830 for Analysis of ETBE Dose Formulation.

ETBE Standard Curve

	SampleName	Vial	Name	Level	X Value	Response	Calc. Value	% Deviation
Mean							1099.3	
Std. Dev.							20.1	
% RSD							1.8	

Reported by User: Yan Hong (HongY)
Report Method: Individual_Generic_curve
Report Method ID: 4712
Page: 3 of 3

Project Name: API Date Printed: 6/20/2007 7:38:34 PM US/Eastern Project Specific Analytical Method for Analysis of Ethyl Tertiary Butyl Ether in Oral Dose Formulations

1

SOURCE: AUTHOR: APPROVED BY:	Oral Dose Science at Signed Date Signed Date Date	pecific Analytical Method for Analysis of Ethyl Formulations and Engineering por particle I Norman F Gaudette, Jr. le - 5 - 07 $\frac{1}{2}m M_{2} R$ Jennell 06 - 05 - 07	
AUTHOR:	Signed _ Date _ Signed _	Norman F Gaudette, Jr. 6-5-07 <u>Juni My</u> R. Jennen Timothy R. Fennell 06-05-07	
APPROVED BY:	Date _	Norman F Gaudette, Jr. <u>6-5-07</u> <u>Juni Aby</u> R. Jennell <u>Jennell</u> 06-05-07	
APPROVED BY:	Signed _	Juni Aly R. Jennen Timothy R. Fennell 06-05-07	
EFFECTIVE DATE: _	(0		
	(This versi	(5/07	

ANALYTICAL METHOD	RTI INTERNATIONAL POST OFFICE BOX 12194 RESEARCH TRIANGLE PARK, NC 27709-2194	AM-D0209408.007.0 Page 2 of 8	

1.0 INTRODUCTION

This document contains procedures for analysis of oral dose formulations containing the compound Ethyl Tertiary Butyl Ether (ETBE). Additionally, procedures for conduct of a stability study establishing the chemical stability of ETBE in aqueous dose formulations at 1 mg/ml and 5 mg/mL are detailed in this document. The methodology described in this document was developed for support of a study conducted under the RTI protocol Pharmacokinetics of Ethyl Tertiary Butyl Ether (ETBE) in Blood following a Single Oral Exposure (RTI Protocol RTI-934).

2.0 REAGENTS AND CHEMICALS

<u>Ethyl tertiary Butyl Ether (ETBE):</u> 99% purity, Sigma-Aldrich, St. Louis, MO. This test article lot approved by the study sponsor will be used for preparation of all standards.

Methanol: HPLC grade or equivalent

Distilled/Deionized (D/I) water: Obtain this reagent from the Corning Still in Hermann 210.

Helium: _99.996% purity, obtained from National Welders, Durham NC.

3.0 EQUIPMENT

Equipment necessary for completion of procedures in this method are detailed in the table below.

ANALYT METHO	POST OFFICE BOX 12		94 PARK, NC 27709-2194	AM-D0209408.007.0 Page 3 of 8			
			able 1 uipment				
	ltem		Description				
	Electron	ic Balance	Four-place electronic balar Mettler AG 204, or equival				
	Gas Chromatograph		Agilent Model 6890 gas chromatograph equipped with an Agilent Model 5973 Mass Selective Detector (MSD), or equivalent				
	Electronic Pipet (100 µL)		Rainin Model LTS-100, or equivalent				
	Electronic Pipet (1000 µL)		Rainin Model LTS-1000, or equivalent				
	Electron	ic Pipet (20 μL)	Rainin Model LTS-20, or equivalent				
	Syringe (50 µL)		Hamilton, Gastight#1705, equivalent	or			
4.0 PROC	4.0 PROCEDURES						
4.1	Prepa	aration of Stock Solutions					
dilu cal	Prepare two stock solutions (Stocks A and B) at a target concentration of 1 mg/ml for subsequent dilution in preparation of calibration standards. Concentration of stock solution should be calculated in units of micrograms ETBE per milliliter (mL) of solution. Prepare the stock solutions according to the follow procedure. Store the ETBE stock solutions at approximately -20 °C.						
	 Fill a 10-ml volumetric flask with methanol. Remove 17.5 μLof methanol using a pipet and tare the volumetric flask. 						
	2) Using a syringe, add 15 μ l of ETBE into the flask and cap the volumetric flask						

immediately.

3)	3) Record weights of ETBE added to the flask, and place the volumetric flask on ice.							
4)	Cool and mix the stock solution by hand. 4) Calculate the actual concentration of stock solutions.							
,								
4.2 Pre	paration of Ca	libration Standard Solu	utions					
		ation standards consis	•					
0		ow. Place all solutions entration of each stand			01 1			
		ual autosampler vials in						
solutions at	ca20 °C.	·	·					
		Table 2: Calibration	Standard Drav					
			Standard Free					
	Target ETBE	Stock or Standard	Stock or	Volume	Target			
ID I	Conc.	ID	Standard	Methano Required				
	(ua/ml)		volume min					
	(µg/ml)		Volume (ml)	(ml)				
B3	(µg/ml) 1000	Stock B	N/A		N/A			
		Stock B Stock A		(ml)				
B3	1000		N/A	(ml) N/A	N/A			
B3 A3	1000 750	Stock A	N/A 2.5	(ml) N/A X	N/A 3:4			
B3 A3 B2	1000 750 500	Stock A Standard B3	N/A 2.5 2	(ml) N/A X 2	N/A 3:4 1:2			

ANALYTICAL METHOD	RTI INTERNATIONAL POST OFFICE BOX 12194 RESEARCH TRIANGLE PARK, NC 27709-2194	AM-D0209408.007.0 Page 5 of 8					
methanol add	Dilute the dose formulation with methanol in triplicates using pipets. Record the weight of methanol added to each dilution as well as the total weight of the dilution solution. Calculate a dilution factor according the following equation:						
[(We methanol add	ight of total solution)/Density (methanol)]/ [(Weight of total solu ded)].	ition)-(Weight of					
Tran	sfer duplicate aliquots of each dilution into inserts in GC vials f	or analysis.					
4.4 Analy	ysis of Standards and Samples						
	ly standards and samples using gas chromatography with flam ameters are detailed below in Table 3.	ne ionization detection.					

ANALYTICAL METHOD	POST	ERNATIONAL DFFICE BOX 12194 RCH TRIANGLE PARK, NC 27709-2194	AM-D0209408.007.0 Page 6 of 8
	Tah	ole 3 Instrument Conditions	
	Tau	se s instrument conditions	
<u>6890 GC</u>		e	
Injection m		Splitless	
Injector ter		200 °C	
Carrier gas			
Injector pu	rge now rge start time	15 ml/min 0.75 min	
Flow rate	ge start time	7.0 ml/min	
Column		DB-1, 30m x 0.530 mm i.d., 3 μm film thickness	
Column		(J&W, Agilent technologies, Wilmington, DE)	
<u>GC oven p</u>	rogram		
Initial temp		40 °C	
Initial time	crature	2 min	
Temperatu	re rate	10 °C/min	
Final temp		60 °C	
Final time		0.10 min	
Temperatu	re rate A	100 °C/min	
Final time .		0.5 min	
Final temp		200 °C	
Run time		6 min	
<u>Flame Ion</u>	zation Detector		
Temperatu	re	250 °C	
Hydrogen 1		30 ml/min	
Helium flow		300 ml/min	
Makeup ga	s flow rate	20 ml/min	

ANALYTICAL METHOD	RTI INTERNATIONAL POST OFFICE BOX 12194 RESEARCH TRIANGLE PARK, NC 27709-2194	AM-D0209408.007.0 Page 7 of 8				
Use - the regressio	ulation of Results the Empower 2 software to calculate the linear regression (sta n's linear correlation coefficient (r). Also, utilize the Empowe ndard concentration, accuracy of each standard solution, and	er 2 software to				
concentratior deviation (%f concentratior	n. Calculate mean concentration values, standard solution, and n. Calculate mean concentration values, standard deviations, RSD) for the triplicate standard concentration points and replic ns with Empower 2. Use Microsoft Excel spreadsheets to perfo illution factors	and relative standard cate dose formulation				
	ptance Criteria Correlation coefficient (r) must be greater than or equal to 0.99	90.				
	 Measured concentration of standards must be within ± 15% of the nominal value for at least 75% of calibration standards 					
Prior to cond stored at roo formulations triplicate aliqu termination o stable under	nulation Stability Study uct of the animal study, determine the stability of aqueous ET m temperature for three days. Conduct the study by preparing at 1 mg/ml and 5 mg/ml storing these formulation at room tem uots of the formulation on the day of preparation, the following f the stability study (3 days). Formulation concentration will b the storage conditions if the concentration is within \pm 15 % of m measured on the day of preparation.	g two mock nperature. Analyze i day, and at e considered to be				

ANALYTICAL METHOD	RTI INTERNATIONAL POST OFFICE BOX 12194 RESEARCH TRIANGLE PARK, NC 27709-2194	AM-D0209408.007.0 Page 8 of 8
	REVIEW/ REVISION LOG	
<u>Rev. # R</u> 0	<u>ev. Date Description</u> NA Original version.	

Appendix F

Blood Sample Collection and Analysis for ETBE

Sample Naming and Abbreviations

In the tables of raw data values in this appendix, some of the table headings are derived from the conventions of sample naming used in the Debra[™] system. These are explained below.

Column Heading	Source	Explanation
Subject		Animal number
Subject wt. (g)	Balance	Animal wt.
Sample		The type of sample, e.g. blood
Time		The time of sample collection
Dose Time	Workstation	The time of dosing
Nominal Time	Input	The nominal sampling time for
		blood collection
Elapsed Time	Calculated	The time after dosing of actual
		sample collection
Full Syringe wt (g)	Balance	Weight of full syringe prior to
		dosing
Empty Syringe wt (g)	Balance	Weight of empty syringe after
		dosing
Dose Solution Admin. (g)	Calculated	Calculated from Full syringe wt –
		empty syringe wt
Dose Admin (mg)	Calculated	ETBE Admin calculated from Dose
		solution administered x
		concentration of dose solution.
Actual Dose (mg/kg)	Calculated	ETBE admin/Animal wt
Pot wt (g)	Balance	The weight of the empty sample
		container
Sample wt (g)	Balance	Sample weight, the weight of
		sample + empty sample container
Corrected Sample wt (g)	Calculated	The corrected sample weight,
		calculated from Sample wt – Pot wt

O d i set	0	D T '	Nominal	Elapsed Time	O antena Tima
Subject	Sample	Dose Time	Time	(hh:mm:ss)	Capture Time
AN404	Disad	0/40/0007 40:00	45	0.45.00	0/40/0007 40:40
AM01	Blood	6/13/2007 10:03	15 m	0:15:36	6/13/2007 10:19
AM02	Blood	6/13/2007 10:10	15 m	0:14:19	6/13/2007 10:24
AM03	Blood	6/13/2007 10:18	15 m	0:14:09	6/13/2007 10:32
AM04	Blood	6/13/2007 10:25	15 m	0:14:11	6/13/2007 10:39
AM01	Blood	6/13/2007 10:03	30 m	0:30:44	6/13/2007 10:34
AM02	Blood	6/13/2007 10:10	30 m	0:29:25	6/13/2007 10:39
AM03	Blood	6/13/2007 10:18	30 m	0:29:42	6/13/2007 10:48
AM04	Blood	6/13/2007 10:25	30 m	0:30:39	6/13/2007 10:56
AM01	Blood	6/13/2007 10:03	1 h	0:59:06	6/13/2007 11:02
AM02	Blood	6/13/2007 10:10	1 h	0:58:58	6/13/2007 11:09
AM03	Blood	6/13/2007 10:18	1 h	0:59:38	6/13/2007 11:18
AM04	Blood	6/13/2007 10:25	1 h	1:01:04	6/13/2007 11:26
AM01	Blood	6/13/2007 10:03	2 h	2:03:09	6/13/2007 12:06
AM02	Blood	6/13/2007 10:10	2 h	1:59:01	6/13/2007 12:09
AM03	Blood	6/13/2007 10:18	2 h	1:59:11	6/13/2007 12:17
AM04	Blood	6/13/2007 10:25	2 h	1:59:24	6/13/2007 12:25
AM01	Blood	6/13/2007 10:03	4 h	4:03:13	6/13/2007 14:06
AM02	Blood	6/13/2007 10:10	4 h	3:58:28	6/13/2007 14:08
AM03	Blood	6/13/2007 10:18	4 h	3:58:58	6/13/2007 14:17
AM04	Blood	6/13/2007 10:25	4 h	4:00:31	6/13/2007 14:26
AM01	Blood	6/13/2007 10:03	8 h	8:07:00	6/13/2007 18:10
AM02	Blood	6/13/2007 10:10	8 h	8:02:06	6/13/2007 18:12
AM03	Blood	6/13/2007 10:18	8 h	7:59:19	6/13/2007 18:17
AM04	Blood	6/13/2007 10:25	8 h	8:00:11	6/13/2007 18:25
AM01	Blood	6/13/2007 10:03	24 h	24:09:52	6/14/2007 10:13
AM02	Blood	6/13/2007 10:10	24 h	24:09:20	6/14/2007 10:19
AM03	Blood	6/13/2007 10:18	24 h	24:06:03	6/14/2007 10:24
AM04	Blood	6/13/2007 10:25	24 h	24:03:00	6/14/2007 10:28
BF01	Blood	6/14/2007 11:13	15 m	0:13:48	6/14/2007 11:27
BF01	Blood	6/14/2007 11:13	30 m	0:28:24	6/14/2007 11:41
BF01	Blood	6/14/2007 11:13	1 h	0:59:05	6/14/2007 12:12
BF02	Blood	6/14/2007 11:18	15 m	0:17:12	6/14/2007 11:35
BF02	Blood	6/14/2007 11:18	30 m	0:28:04	6/14/2007 11:46
BF02	Blood	6/14/2007 11:18	1 h	0:58:45	6/14/2007 12:16
BF03	Blood	6/14/2007 11:27	15 m	0:12:04	6/14/2007 11:40
BF03	Blood	6/14/2007 11:27	30 m	0:29:13	6/14/2007 11:57
BF03	Blood	6/14/2007 11:27	1 h	1:00:51	6/14/2007 12:28

Table 1. Blood Sample Collection Times.

Table 1 (continued). Blood Sample Collection Times.

Subject	Sample	Dose Time	Nominal Time	Elapsed Time (hh:mm:ss)	Capture Time
Casjeet	Campie	Dose Time		(111.111.135)	
BF04	Blood	6/14/2007 11:37	15 m	0:13:18	6/14/2007 11:50
BF04	Blood	6/14/2007 11:37	30 m	0:29:49	6/14/2007 12:06
BF04	Blood	6/14/2007 11:37	1 h	0:59:21	6/14/2007 12:36
BF01	Blood	6/14/2007 11:13	2 h	1:58:43	6/14/2007 13:12
BF02	Blood	6/14/2007 11:18	2 h	1:59:03	6/14/2007 13:17
BF03	Blood	6/14/2007 11:27	2 h	2:01:56	6/14/2007 13:29
BF04	Blood	6/14/2007 11:37	2 h	1:59:31	6/14/2007 13:36
BF01	Blood	6/14/2007 11:13	4 h	4:03:52	6/14/2007 15:17
BF02	Blood	6/14/2007 11:18	4 h	4:02:44	6/14/2007 15:20
BF03	Blood	6/14/2007 11:27	4 h	4:12:40	6/14/2007 15:40
BF04	Blood	6/14/2007 11:37	4 h	4:01:30	6/14/2007 15:38
BF01	Blood	6/14/2007 11:13	8 h	8:00:00	6/14/2007 19:13
BF02	Blood	6/14/2007 11:18	8 h	7:59:52	6/14/2007 19:17
BF03	Blood	6/14/2007 11:27	8 h	8:04:35	6/14/2007 19:32
BF04	Blood	6/14/2007 11:37	8 h	8:00:57	6/14/2007 19:38
BF01	Blood	6/14/2007 11:13	24 h	24:02:42	6/15/2007 11:16
BF02	Blood	6/14/2007 11:18	24 h	24:00:12	6/15/2007 11:18
BF03	Blood	6/14/2007 11:27	24 h	24:02:32	6/15/2007 11:30
BF04	Blood	6/14/2007 11:37	24 h	24:00:56	6/15/2007 11:38
CM01	Blood	6/20/2007 9:36	15 m	0:14:12	6/20/2007 9:50
CM02	Blood	6/20/2007 9:40	15 m	0:14:18	6/20/2007 9:55
CM03	Blood	6/20/2007 9:44	15 m	0:14:17	6/20/2007 9:58
CM04	Blood	6/20/2007 9:48	15 m	0:14:34	6/20/2007 10:03
CM01	Blood	6/20/2007 9:36	30 m	0:29:45	6/20/2007 10:06
CM02	Blood	6/20/2007 9:40	30 m	0:29:26	6/20/2007 10:10
CM03	Blood	6/20/2007 9:44	30 m	0:29:35	6/20/2007 10:14
CM04	Blood	6/20/2007 9:48	30 m	0:29:35	6/20/2007 10:18
CM01	Blood	6/20/2007 9:36	1 h	0:59:30	6/20/2007 10:35
CM02	Blood	6/20/2007 9:40	1 h	0:59:43	6/20/2007 10:40
CM03	Blood	6/20/2007 9:44	1 h	0:59:36	6/20/2007 10:44
CM04	Blood	6/20/2007 9:48	1 h	0:59:46	6/20/2007 10:48
CM08	Blood	6/20/2007 10:37	15 m	0:16:24	6/20/2007 10:53
CM08	Blood	6/20/2007 10:37	30 m	0:31:34	6/20/2007 11:08
CM01	Blood	6/20/2007 9:36	2 h	1:59:06	6/20/2007 11:35
CM02	Blood	6/20/2007 9:40	2 h	2:02:08	6/20/2007 11:42
CM03	Blood	6/20/2007 9:44	2 h	2:01:48	6/20/2007 11:46
CM08	Blood	6/20/2007 10:37	2 h	1:59:46	6/20/2007 12:36
CM01	Blood	6/20/2007 9:36	4 h	3:59:41	6/20/2007 13:35
CM02	Blood	6/20/2007 9:40	4 h	4:01:04	6/20/2007 13:41
CM03	Blood	6/20/2007 9:44	4 h	3:59:29	6/20/2007 13:43
CM08	Blood	6/20/2007 10:37	4 h	3:59:39	6/20/2007 14:36

Table 1 (continued). Blood Sample Collection Times.

Subject	Sample	Dose Time	Nominal Time	Elapsed Time (hh:mm:ss)	Capture Time
	•			, , , , , , , , , , , , , , , , , , , ,	•
CM01	Blood	6/20/2007 9:36	8 h	8:03:04	6/20/2007 17:39
CM02	Blood	6/20/2007 9:40	8 h	8:01:17	6/20/2007 17:42
CM03	Blood	6/20/2007 9:44	8 h	7:59:19	6/20/2007 17:43
CM08	Blood	6/20/2007 10:37	8 h	8:01:21	6/20/2007 18:38
CM01	Blood	6/20/2007 9:36	24 h	23:59:48	6/21/2007 9:36
CM02	Blood	6/20/2007 9:40	24 h	24:03:54	6/21/2007 9:44
CM03	Blood	6/20/2007 9:44	24 h	24:01:51	6/21/2007 9:46
CM08	Blood	6/20/2007 10:37	24 h	24:01:00	6/21/2007 10:38
CM08	Blood	6/20/2007 10:37	1 h	0:59:31	6/20/2007 11:36
DF01	Blood	6/21/2007 10:04	15 m	0:14:37	6/21/2007 10:19
DF02	Blood	6/21/2007 10:11	15 m	0:14:39	6/21/2007 10:25
DF04	Blood	6/21/2007 10:34	15 m	0:17:02	6/21/2007 10:51
DF01	Blood	6/21/2007 10:04	30 m	0:30:05	6/21/2007 10:34
DF02	Blood	6/21/2007 10:11	30 m	0:28:34	6/21/2007 10:39
DF04	Blood	6/21/2007 10:34	30 m	0:29:53	6/21/2007 11:04
DF01	Blood	6/21/2007 10:04	1 h	0:58:56	6/21/2007 11:03
DF02	Blood	6/21/2007 10:11	1 h	0:58:42	6/21/2007 11:09
DF04	Blood	6/21/2007 10:34	1 h	0:58:20	6/21/2007 11:33
DF05	Blood	6/21/2007 11:02	15 m	0:23:51	6/21/2007 11:26
DF05	Blood	6/21/2007 11:02	30 m	0:29:27	6/21/2007 11:31
DF05	Blood	6/21/2007 11:02	1 h	0:57:06	6/21/2007 11:59
DF01	Blood	6/21/2007 10:04	2 h	1:59:21	6/21/2007 12:03
DF02	Blood	6/21/2007 10:11	2 h	2:01:02	6/21/2007 12:12
DF04	Blood	6/21/2007 10:34	2 h	2:01:54	6/21/2007 12:36
DF05	Blood	6/21/2007 11:02	2 h	2:00:50	6/21/2007 13:03
DF01	Blood	6/21/2007 10:04	4 h	3:58:28	6/21/2007 14:03
DF02	Blood	6/21/2007 10:11	4 h	4:00:31	6/21/2007 14:11
DF04	Blood	6/21/2007 10:34	4 h	3:43:14	6/21/2007 14:18
DF05	Blood	6/21/2007 11:02	4 h	4:00:04	6/21/2007 15:02
DF01	Blood	6/21/2007 10:04	8 h	8:00:11	6/21/2007 18:04
DF02	Blood	6/21/2007 10:11	8 h	7:58:18	6/21/2007 18:09
DF04	Blood	6/21/2007 10:34	8 h	7:58:53	6/21/2007 18:33
DF05	Blood	6/21/2007 11:02	8 h	8:08:21	6/21/2007 19:10
DF01	Blood	6/21/2007 10:04	24 h	23:59:27	6/22/2007 10:04
DF02	Blood	6/21/2007 10:11	24 h	24:07:07	6/22/2007 10:18
DF04	Blood	6/21/2007 10:34	24 h	24:00:45	6/22/2007 10:35
DF05	Blood	6/21/2007 11:02	24 h	24:01:44	6/22/2007 11:04

-

Subject	Sample	Time	Pot wt	Sample wt	Corrected
00.0,000	Campio				Sample Weight
AM01	Blood	Predose	11.4212 g	11.6353 g	0.2141 g
AM01	Blood	15 m	11.1270 g	11.2833 g	0.1563 g
AM01	Blood	30 m	11.1523 g	11.3527 g	0.2004 g
AM01	Blood	1 h	11.1092 g	11.2900 g	0.1808 g
AM01	Blood	2 h	11.1053 g	11.2445 g	0.1392 g
AM01	Blood	4 h 11.4308 g		11.6115 g	0.1807 g
AM01	Blood	8 h 11.4329 g		11.5216 g	0.0887 g
AM01	Blood	24 h	11.1190 g	11.2360 g	0.1170 g
AM02	Blood	Predose	11.4371 g	11.6335 g	0.1964 g
AM02	Blood	15 m	11.3950 g	11.5758 g	0.1808 g
AM02	Blood	30 m	11.4324 g	11.6002 g	0.1678 g
AM02	Blood	1 h	11.1433 g	11.3230 g	0.1797 g
AM02	Blood	2 h	11.1615 g	11.3014 g	0.1399 g
AM02	Blood	4 h	11.4348 g	11.6017 g	0.1669 g
AM02	Blood	8 h	11.4201 g	11.5906 g	0.1705 g
AM02	Blood	24 h	11.2571 g	11.3627 g	0.1056 g
AM03	Blood	Predose	11.1365 g	11.3031 g	0.1666 g
AM03	Blood	15 m	11.1674 g	11.3408 g	0.1734 g
AM03	Blood	30 m	11.1094 g	11.3016 g	0.1922 g
AM03	Blood	1 h	11.4141 g	11.5909 g	0.1768 g
AM03	Blood	2 h	11.4064 g	11.5602 g	0.1538 g
AM03	Blood	4 h	11.1139 g	11.3116 g	0.1977 g
AM03	Blood	8 h	11.4673 g	11.6316 g	0.1643 g
AM03	Blood	24 h	11.1560 g	11.2571 g	0.1011 g
AM04	Blood	Predose	11.4306 g	11.5854 g	0.1548 g
AM04	Blood	15 m	11.1558 g	11.3193 g	0.1635 g
AM04	Blood	30 m	11.4293 g	11.5988 g	0.1695 g
AM04	Blood	1 h	11.4757 g	11.6363 g	0.1606 g
AM04	Blood	2 h	11.0899 g	11.2658 g	0.1759 g
AM04	Blood	4 h	11.1390 g	11.3385 g	0.1995 g
AM04	Blood	8 h	11.1518 g	11.3606 g	0.2088 g
AM04	Blood	24 h	11.3721 g	11.4938 g	0.1217 g

Table 2. Blood Sample Weights from Group A.

Subject	Sample	Time	Pot wt	Sample wt	Corrected
Cusjoor	Campio				Sample Weight
BF01	Blood	Predose	11.1488 g	11.2307 g	0.0819 g
BF01	Blood	15 m	11.2873 g	11.4526 g	0.1653 g
BF01	Blood	30 m	11.0774 g	11.2678 g	0.1904 g
BF01	Blood	1 h	11.0936 g	11.2735 g	0.1799 g
BF01	Blood	2 h	11.3922 g	11.5856 g	0.1934 g
BF01	Blood	4 h	11.2622 g	11.4151 g	0.1529 g
BF01	Blood	8 h	11.0922 g	11.1995 g	0.1073 g
BF01	Blood	24 h	11.1848 g	11.3325 g	0.1477 g
BF02	Blood	Predose	11.1217 g	11.3399 g	0.2182 g
BF02	Blood	15 m	11.3030 g	11.4662 g	0.1632 g
BF02	Blood	30 m	11.2971 g	11.4624 g	0.1653 g
BF02	Blood	1 h	11.2922 g	11.4724 g	0.1802 g
BF02	Blood	2 h	11.3644 g	11.5423 g	0.1779 g
BF02	Blood	4 h	11.0763 g	11.2486 g	0.1723 g
BF02	Blood	8 h	11.3128 g	11.4617 g	0.1489 g
BF02	Blood	24 h	11.0841 g	11.2386 g	0.1545 g
BF03	Blood	Predose	11.3445 g	11.5136 g	0.1691 g
BF03	Blood	15 m	11.1272 g	11.2720 g	0.1448 g
BF03	Blood	30 m	11.0637 g	11.2508 g	0.1871 g
BF03	Blood	1 h	11.1027 g	11.2808 g	0.1781 g
BF03	Blood	2 h	11.1160 g	11.2066 g	0.0906 g
BF03	Blood	4 h	11.2468 g	11.3505 g	0.1037 g
BF03	Blood	8 h	11.0763 g	11.1955 g	0.1192 g
BF03	Blood	24 h	11.1114 g	11.2460 g	0.1346 g
BF04	Blood	Predose	11.1544 g	11.3162 g	0.1618 g
BF04	Blood	15 m	11.0889 g	11.2715 g	0.1826 g
BF04	Blood	30 m	11.3214 g	11.4185 g	0.0971 g
BF04	Blood	1 h	11.0806 g	11.2183 g	0.1377 g
BF04	Blood	2 h	11.1596 g	11.3377 g	0.1781 g
BF04	Blood	4 h	11.3140 g	11.4553 g	0.1413 g
BF04	Blood	8 h	11.2672 g	11.4080 g	0.1408 g
BF04	Blood	24 h	11.1306 g	11.2838 g	0.1532 g

Table 3. Blood Sample Weights from Group B.

Subject	Sample	Time	Pot wt	Sample wt	Corrected
Cusjoor	Campio				Sample Weight
CM01	Blood	Predose	11.3409 g	11.4943 g	0.1534 g
CM01	Blood	15 m	11.1423 g	11.2985 g	0.1562 g
CM01	Blood	30 m	11.3269 g	11.4757 g	0.1488 g
CM01	Blood	1 h	11.2967 g	11.4562 g	0.1595 g
CM01	Blood	2 h	11.4177 g	11.5398 g	0.1221 g
CM01	Blood	4 h	11.3391 g	11.4876 g	0.1485 g
CM01	Blood	8 h	11.3190 g	11.4859 g	0.1669 g
CM01	Blood	24 h	11.1246 g	11.3059 g	0.1813 g
CM02	Blood	Predose	11.4180 g	11.5603 g	0.1423 g
CM02	Blood	15 m	11.2860 g	11.4204 g	0.1344 g
CM02	Blood	30 m	11.3723 g	11.5325 g	0.1602 g
CM02	Blood	1 h	11.2280 g	11.3301 g	0.1021 g
CM02	Blood	2 h	11.3617 g	11.4798 g	0.1181 g
CM02	Blood	4 h	11.1876 g	11.2883 g	0.1007 g
CM02	Blood	8 h	11.2039 g	11.3695 g	0.1656 g
CM02	Blood	24 h	11.3990 g	11.5725 g	0.1735 g
CM03	Blood	Predose	11.2254 g	11.3787 g	0.1533 g
CM03	Blood	15 m	11.2436 g	11.4241 g	0.1805 g
CM03	Blood	30 m	11.3924 g	11.4825 g	0.0901 g
CM03	Blood	1 h	11.2066 g	11.3237 g	0.1171 g
CM03	Blood	2 h	11.2775 g	11.4064 g	0.1289 g
CM03	Blood	4 h	11.3050 g	11.4452 g	0.1402 g
CM03	Blood	8 h	11.2963 g	11.4470 g	0.1507 g
CM03	Blood	24 h	11.3003 g	11.4514 g	0.1511 g
CM08	Blood	Predose	11.4752 g	11.5913 g	0.1161 g
CM08	Blood	15 m	11.4486 g	11.5910 g	0.1424 g
CM08	Blood	30 m	11.1118 g	11.2350 g	0.1232 g
CM08	Blood	1 h	11.1109 g	11.2690 g	0.1581 g
CM08	Blood	2 h	11.4776 g	11.6386 g	0.1610 g
CM08	Blood	4 h	11.4341 g	11.5507 g	0.1166 g
CM08	Blood	8 h	11.4683 g	11.6235 g	0.1552 g
CM08	Blood	24 h	11.4605 g	11.7199 g	0.2594 g

Table 4. Blood Sample Weights from Group C.

Subject	Sample	Time	Pot wt	Sample wt	Corrected
•	•			•	Sample Weight
DF01	Blood	Predose	11.4138 g	11.5602 g	0.1464 g
DF01	Blood	15 m	11.2374 g	11.3676 g	0.1302 g
DF01	Blood	30 m	11.1363 g	11.2859 g	0.1496 g
DF01	Blood	1 h	11.3407 g	11.5101 g	0.1694 g
DF01	Blood	2 h	11.1892 g	11.3090 g	0.1198 g
DF01	Blood	4 h	11.1345 g	11.2604 g	0.1259 g
DF01	Blood	8 h	11.4590 g	11.6008 g	0.1418 g
DF01	Blood	24 h	11.2978 g	11.4413 g	0.1435 g
DF02	Blood	Predose	11.3077 g	11.4628 g	0.1551 g
DF02	Blood	15 m	11.3979 g	11.5384 g	0.1405 g
DF02	Blood	30 m	11.3715 g	11.5452 g	0.1737 g
DF02	Blood	1 h	11.1177 g	11.2308 g	0.1131 g
DF02	Blood	2 h	11.3159 g	11.4197 g	0.1038 g
DF02	Blood	4 h	11.4005 g	11.4837 g	0.0832 g
DF02	Blood	8 h	11.1653 g	11.3037 g	0.1384 g
DF02	Blood	24 h	11.2631 g	11.4267 g	0.1636 g
DF04	Blood	Predose	11.1653 g	11.2854 g	0.1201 g
DF04	Blood	15 m	11.2471 g	11.3944 g	0.1473 g
DF04	Blood	30 m	11.1474 g	11.2523 g	0.1049 g
DF04	Blood	1 h	11.3201 g	11.4407 g	0.1206 g
DF04	Blood	2 h	11.1649 g	11.2995 g	0.1346 g
DF04	Blood	4 h	11.1617 g	11.2531 g	0.0914 g
DF04	Blood	8 h	11.1842 g	11.2963 g	0.1121 g
DF04	Blood	24 h	11.1453 g	11.3038 g	0.1585 g
DF05	Blood	Predose	11.4396 g	11.5576 g	0.1180 g
DF05	Blood	15 m	11.3806 g	11.4930 g	0.1124 g
DF05	Blood	30 m	11.1289 g	11.1910 g	0.0621 g
DF05	Blood	1 h	11.1786 g	11.3300 g	0.1514 g
DF05	Blood	2 h	11.3245 g	11.3913 g	0.0668 g
DF05	Blood	4 h	11.4156 g	11.5363 g	0.1207 g
DF05	Blood	8 h	11.3797 g	11.5310 g	0.1513 g
DF05	Blood	24 h	11.1243 g	11.2416 g	0.1173 g

Table 4. Blood Sample Weights from Group D.

 Table 5. Low Concentration Calibration Curve for High Dose Groups A and B.

		_	Peak	Area					
Sample I.D.	Standard I.D.	Conc. (µg/ml)	ETBE	MTBE	Peak Area Ratio	Cal. Conc. (µg/ml)	Mean (µg/mL)	Accuracy (%)	Error (%)
12307-56A	Blood blank	n/a	0	n/a	n/a	n/a	n/a	-	-
12307-57A	Blood blank	n/a	0	n/a	n/a	n/a	-	-	-
12307-58A	Blood blank	n/a	0	n/a	n/a	n/a	-	-	-
12307-56B	Blood ISTD blank	n/a	0	2641319	n/a	n/a	n/a	-	-
12307-57A	Blood ISTD blank	n/a	0	2154647	n/a	n/a	-	-	-
12307-58A	Blood ISTD blank	n/a	0	2302458	n/a	n/a	-	-	-
12307-56C	Std A1	0.102	22552	2602098	0.00867	0.103	0.104	101%	1.43%
12307-57C	Std A1	0.102	18713	2138062	0.00875	0.104	-	102%	2.45%
12307-58C	Std A1	0.102	19885	2275009	0.00874	0.104	-	102%	2.31%
12307-56D	Std B1	0.252	52855	2554845	0.0207	0.249	0.253	98.8%	-1.25%
12307-57D	Std B1	0.252	44467	2107229	0.0211	0.254	-	101%	0.739%
12307-58D	Std B1	0.252	46168	2172972	0.0212	0.256	-	101%	1.43%
12307-56E	Std A2	0.497	102237	2562139	0.0399	0.481	0.485	96.8%	-3.17%
12307-57E	Std A2	0.497	85024	2102020	0.0404	0.488	-	98.2%	-1.84%
12307-57E	Std A2	0.497	90406	2243675	0.0403	0.486	-	97.8%	-2.22%
12307-56F	Std B2	1.03	209164	2505428	0.0835	1.01	1.03	97.9%	-2.10%
12307-57F	Std B2	1.03	182555	2092192	0.0873	1.05	-	102%	2.33%
12307-58F	Std B2	1.03	188676	2215712	0.0852	1.03	-	99.9%	-0.14%
12307-56G	Std A3	2.43	495521	2476881	0.200	2.42	2.43	99.5%	-0.481%
12307-57G	Std A3	2.43	431537	2116191	0.204	2.47	-	101%	1.44%
12307-57G	Std A3	2.43	445943	2249957	0.198	2.40	-	98.6%	-1.41%
12307-56H	Std B3	5.17	1046174	2490883	0.420	5.08	5.18	98.2%	-1.77%
12307-57H	Std B3	5.17	922001	2129104	0.433	5.24	-	101%	1.28%
12307-58H	Std B3	5.17	952742	2199941	0.433	5.24	-	101%	1.29%

 Table 5 (continued).
 Low Concentration Calibration Curve for High Dose Groups A and B.

			Peak	Area					
Sample I.D.	Standard I.D.	Conc. (µg/ml)	ETBE	MTBE	Peak Area Ratio	Cal. Conc. (µg/ml)	Mean (µg/mL)	Accuracy (%)	Error (%)
12307-65-1	LQC	0.497	101327	2426211	0.0418	0.504	-	101%	1.36%
12307-65-2	LQC	0.497	98466	2404023	0.0410	0.494	-	99.4%	-0.598%
12307-65-1	MQC	5.17	1049759	2348383	0.4470	5.41	-	105%	4.55%
12307-65-2	MQC	5.17	965608	2252523	0.4287	5.18	-	100%	0.260%
	a INTERCEPT	0.0001127							
	b SLOPE	0.08268							
	r	0.9998							

 Table 6. High Concentration Calibration Curve for High Dose Groups A and B.

			Peak	Area					
Sample I.D.	Standard I.D.	Conc. (µg/ml)	ETBE	MTBE	Peak Area Ratio	Cal. Conc. (µg/ml)	Mean (µg/mL)	Accuracy (%)	Error (%)
12307-56H	Std B3	5.17	1046174	2490883	0.420	5.45	5.54	105%	5.41%
12307-57H	Std B3	5.17	922001	2129104	0.433	5.58	-	108%	8.01%
12307-58H	Std B3	5.17	952742	2199941	0.433	5.58	-	108%	8.02%
12307-56l	Std A4	9.76	2055076	2477991	0.829	9.66	9.74	99.0%	-1.031%
12307-57I	Std A4	9.76	1801497	2108315	0.854	9.92	-	102%	1.62%
12307-58I	Std A4	9.76	1797962	2175731	0.826	9.63	-	98.7%	-1.34%
12307-56J	Std B4	25.8	5505071	2415755	2.28	24.6	24.9	95.2%	-4.78%
12307-57J	Std B4	25.8	4901307	2117403	2.31	24.9	-	96.6%	-3.35%
12307-58J	Std B4	25.8	5180410	2223813	2.33	25.1	-	97.2%	-2.76%
12307-56K	Std A5	48.9	10630375	2384396	4.46	47.0	47.5	96.1%	-3.93%
12307-57K	Std A5	48.9	9413503	2073300	4.54	47.8	-	97.8%	-2.20%
12307-58K	Std A5	48.9	9961182	2193738	4.54	47.8	-	97.8%	-2.19%
12307-56L	Std B5	104	22891077	2357577	9.71	101	102	96.7%	-3.27%
12307-57L	Std B5	104	20673056	2090026	9.89	103	-	98.5%	-1.48%
12307-58L	Std B5	104	20351677	2078699	9.79	102	-	97.5%	-2.48%
12307-56M	Std A6	249	54977181	2292603	24.0	248	253	99.6%	-0.386%
12307-57M	Std A6	249	50642541	2039543	24.8	256	-	103%	3.13%
12307-58M	Std A6	249	52411517	2118717	24.7	256	-	103%	2.74%
12307-63-1	HQC	104	22085053	2166264	10.2	106	-	102%	1.51%
12307-63-1	HQC	104	24612373	2365010	10.4	108	-	104%	3.60%
	a INTERCEPT	-0.10995							
	b SLOPE	0.09724							
	r	0.9996							

		Peak	Area				
Rat.	Time point	ETBE	MTBE	Peak Area Ratio	Cal. Conc. (µg/ml)	Sample weight (g)	Corrected Conc. (μg/ml)
AM 01	Predose	0	2196830	0	< LOQ	0.2141	< LOQ
	15 min	1816910	2302967	0.789	9.24	0.1563	5.91
	30 min	1262099	2141714	0.589	7.19	0.2004	3.59
	1 hr	559988	2161316	0.259	3.13	0.1808	1.73
	2 hr	138439	2121503	0.0653	0.788	0.1392	0.566
	4 hr	94938	2035726	0.0466	0.563	0.1807	0.311
	8 hr	3241	2199731	0.00147	< LOQ	0.0887	< LOQ
	24 hr	0	2525626	0.000	< LOQ	0.1170	< LOQ
AM 02	Predose	0	2222068	0.000	< LOQ	0.1964	< LOQ
	15 min	2067688	2209167	0.936	10.8	0.1808	5.95
	30 min	872119	2068735	0.422	5.10	0.1678	3.04
	1 hr	601965	2158669	0.279	3.37	0.1797	1.88
	2 hr	153565	2103540	0.0730	0.88	0.1399	0.630
	4 hr	78277	2100924	0.0373	0.45	0.1669	0.269
	8hr	14205	2056302	0.00691	< LOQ	0.1705	< LOQ
	24 hr	0	2482458	0.000	< LOQ	0.1056	< LOQ
AM 03	Predose	0	2203725	0.000	< LOQ	0.1666	< LOQ
	15 min	2473802	2162929	1.14	12.9	0.1734	7.44
	30 min	1743477	2118961	0.823	9.59	0.1922	4.99
	1 hr	742683	2153754	0.345	4.17	0.1768	2.36
	2 hr	181407	2064299	0.0879	1.06	0.1538	0.690
	4 hr	87348	2045608	0.0427	0.515	0.1977	0.261
	8 hr	11530	2123129	0.00543	< LOQ	0.1643	< LOQ
	24 hr	0	2413202	0.000	< LOQ	0.1011	< LOQ

Table 7. ETBE Blood Concentration Analysis for Groups A and B.

		Peak	Area				
Rat.	Time point	ETBE	MTBE	Peak Area Ratio	Cal. Conc. (µg/ml)	Sample weight (g)	Corrected Conc. (μg/ml)
AM 04	Predose	0	2257976	0.000	< LOQ	0.1548	< LOQ
	15 min	2064431	2140584	0.964	11.0	0.1635	6.76
	30 min	901525	2165470	0.416	5.03	0.1695	2.97
	1 hr	395917	2158230	0.183	2.22	0.1606	1.38
	2 hr	206336	2105150	0.0980	1.18	0.1759	0.673
	4 hr	113612	2045057	0.0556	0.671	0.1995	0.336
	8 hr	12628	2095348	0.00603	< LOQ	0.2088	< LOQ
	24 hr	0	2431724	0.000	< LOQ	0.1217	< LOQ
BF 01	Predose	0	2502344	0.000	< LOQ	0.0819	< LOQ
	15 min	1799456	2499526	0.720	8.53	0.1653	5.16
	30 min	1446798	2217557	0.652	7.84	0.1904	4.12
	1 hr	658221	2267553	0.290	3.51	0.1799	1.95
	2 hr	414134	2357315	0.176	2.12	0.1934	1.10
	4 hr	55978	2242089	0.0250	0.301	0.1529	0.197
	8 hr	10761	2474968	0.00435	< LOQ	0.1073	< LOQ
	24 hr	0	2410264	0.000	< LOQ	0.1477	< LOQ
BF 02	Predose	0	2352336	0.000	< LOQ	0.2182	< LOQ
	15 min	1340572	2443639	0.549	6.77	0.1632	4.15
	30 min	903103	2262860	0.399	4.83	0.1653	2.92
	1 hr	744583	2255543	0.330	3.99	0.1802	2.21
	2 hr	315703	2323147	0.136	1.64	0.1779	0.923
	4 hr	96914	2216732	0.0437	0.527	0.1723	0.306
	8 hr	12338	2409563	0.00512	< LOQ	0.1489	< LOQ
	24 hr	0	2367956	0.000	< LOQ	0.1545	< LOQ

Table 7 (continued). ETBE Blood Concentration Analysis for Groups A and B.

		Peak	Area				
Rat.	Time point	ETBE	MTBE	Peak Area Ratio	Cal. Conc. (µg/ml)	Sample weight (g)	Corrected Conc. (μg/ml)
BF 03	Predose	0	2390631	0.000	< LOQ	0.1691	< LOQ
	15 min	1825330	2408157	0.758	8.93	0.1448	6.16
	30 min	1107295	2230081	0.497	6.24	0.1871	3.33
	1 hr	521625	2357660	0.221	2.67	0.1781	1.50
	2 hr	122492	2341144	0.0523	0.63	0.0906	0.697
	4 hr	65921	2205701	0.0299	0.36	0.1037	0.347
	8 hr	3110	2387305	0.00130	< LOQ	0.1192	< LOQ
	24 hr	0	2358860	0.000	< LOQ	0.1346	< LOQ
BF 04	Predose	0	2329569	0.000	< LOQ	0.1618	< LOQ
	15 min	3015285	2341472	1.29	14.4	0.1826	7.87
	30 min	749363	2305076	0.325	3.93	0.0971	4.05
	1 hr	515108	2279502	0.226	2.73	0.1377	1.98
	2 hr	210496	2276311	0.0925	1.12	0.1781	0.627
	4 hr	48962	2155643	0.0227	0.273	0.1413	0.193
	8 hr	15377	2358448	0.00652	< LOQ	0.1408	< LOQ
	24 hr	0	2350284	0.000	< LOQ	0.1532	< LOQ

Table 7 (continued). ETBE Blood Concentration Analysis for Groups A and B.

 Table 8. Low Concentration Calibration Curve for Low Dose Groups C and D.

			Peak	Area					
Sample I.D.	Standard I.D.	Conc. (μg/ml)	ETBE	MTBE	Peak Area Ratio	Cal. Conc. (µg/ml)	Mean (µg/ml)	Accuracy (%)	Error (%)
12307-76A	Blood blank	n/a	0	n/a	n/a	n/a	n/a	-	-
12307-77A	Blood blank	n/a	0	n/a	n/a	n/a	-	-	-
12307-78A	Blood blank	n/a	0	n/a	n/a	n/a	-	-	-
12307-76B	Blood ISTD blank	n/a	0	2401193	n/a	n/a	n/a	-	-
12307-77A	Blood ISTD blank	n/a	0	2549251	n/a	n/a	-	-	-
12307-78A	Blood ISTD blank	n/a	0	2242567	n/a	n/a	-	-	-
12307-76C	Std A1	0.0987	19679	2385455	0.00825	0.104	0.103	105%	5.12%
12307-77C	Std A1	0.0987	20767	2524119	0.00823	0.103	-	105%	4.86%
12307-78C	Std A1	0.0987	17993	2213878	0.00813	0.102	-	104%	3.67%
12307-76D	Std B1	0.267	52632	2369143	0.0222	0.267	0.267	100%	0.00615%
12307-77D	Std B1	0.267	55885	2491181	0.0224	0.270	-	101%	0.958%
12307-78D	Std B1	0.267	47302	2141561	0.0221	0.266	-	99.4%	-0.554%
12307-76E	Std A2	0.500	95098	2336737	0.0407	0.483	0.481	96.6%	-3.39%
12307-77E	Std A2	0.500	100776	2478539	0.0407	0.483	-	96.5%	-3.47%
12307-78E	Std A2	0.500	86099	2139232	0.0402	0.478	-	95.6%	-4.44%
12307-76F	Std B2	1.08	211638	2347792	0.0901	1.06	1.06	98.3%	-1.75%
12307-77F	Std B2	1.08	222909	2504261	0.0890	1.05	-	97.0%	-2.97%
12307-78F	Std B2	1.08	201097	2192174	0.0917	1.08	-	100%	-0.03%
12307-76G	Std A3	2.51	493023	2339302	0.211	2.47	2.52	98.4%	-1.550%
12307-77G	Std A3	2.51	531189	2456918	0.216	2.53	-	101%	0.99%
12307-78G	Std A3	2.51	471407	2168767	0.217	2.55	-	102%	1.53%
12307-76H	Std B3	5.36	1038513	2281832	0.455	5.33	5.39	99.4%	-0.601%
12307-77H	Std B3	5.36	1131632	2464067	0.459	5.38	-	100%	0.300%
12307-78H	Std B3	5.36	1020627	2189878	0.466	5.46	-	102%	1.79%

 Table 8 (continued).
 Low Concentration Calibration Curve for Low Dose Groups C and D.

			Peak	Area					
Sample I.D.	Standard I.D.	Conc. (µg/ml)	ETBE	MTBE	Peak Area Ratio	Cal. Conc. (µg/ml)	Mean (µg/ml)	Accuracy (%)	Error (%)
12307-85-A	LQC	0.500	101692	2560188	0.0397	0.472	-	94.3%	-5.67%
12307-86-A	LQC	0.500	91467	2379344	0.0384	0.457	-	91.3%	-8.66%
12307-85-B	MQC	5.36	1187024	2584089	0.459	5.38	-	100%	0.323%
12307-86-B	MQC	5.36	1006382	2309839	0.436	5.10	-	95.2%	-4.84%
	a INTERCEPT b SLOPE r	-0.00062549 0.085542 0.9998							

			Peak	Area					
Sample I.D.	Standard I.D.	Conc. (µg/ml)	ETBE	МТВЕ	Peak Area Ratio	Cal. Conc. (µg/ml)	Mean (µg/mL)	Accuracy (%)	Error (%)
12307-76H	Std B3	5.36	1038513	2281832	0.455	5.81	5.86	108%	8.46%
12307-77H	Std B3	5.36	1131632	2464067	0.459	5.85	-	109%	9.22%
12307-78H	Std B3	5.36	1020627	2189878	0.466	5.92	-	110%	10.5%
12307-761	Std A4	9.91	1966434	2295658	0.857	9.77	10.0	98.6%	-1.394%
12307-771	Std A4	9.91	2171596	2470927	0.879	10.0	-	101%	0.82%
12307-781	Std A4	9.91	1940862	2161534	0.898	10.2	-	102.7%	2.72%
12307-76J	Std B4	27.0	5549321	2271644	2.44	25.4	25.6	94.1%	-5.88%
12307-77J	Std B4	27.0	5934902	2435181	2.44	25.4	-	93.9%	-6.09%
12307-78J	Std B4	27.0	5399118	2157220	2.50	26.0	-	96.3%	-3.69%
12307-76K	Std A5	50.2	10647916	2292558	4.64	47.1	47.9	93.9%	-6.13%
12307-77K	Std A5	50.2	11671433	2467353	4.73	48.0	-	95.6%	-4.45%
12307-78K	Std A5	50.2	10276072	2139796	4.80	48.7	-	97.0%	-3.03%
12307-76L	Std B5	109	22795863	2190902	10.4	104	106	95.2%	-4.84%
12307-77L	Std B5	109	25778388	2435123	10.6	106	-	96.8%	-3.20%
12307-78L	Std B5	109	23794507	2191879	10.9	108	-	99.2%	-0.766%
12307-76M	Std A6	254	58000722	2234294	26.0	257	260	101%	1.45%
12307-77M	Std A6	254	63467516	2444398	26.0	257	-	101%	1.47%
12307-78M	Std A6	254	58021039	2173056	26.7	265	-	104%	4.33%
12307-85-C	HQC	109	23890305	2317020	10.3	103	-	94.3%	-5.69%
12307-85-D	HQC	109	24163823	2385436	10.1	101	-	92.7%	-7.32%

 Table 9. High Concentration Calibration Curve for Low Dose Groups C and D.

a INTERCEPT -0.13447	а	INTERCEPT	-0.13447
----------------------	---	-----------	----------

b SLOPE 0.10142

r 0.999

		Pea	k Area				
Sample I.D.	Time point	ETBE	МТВЕ	Peak Area Ratio	Cal. Conc. (µg/ml)	Sample weight (g)	Corrected Conc. (μg/ml)
CM 01	Predose	0	2708273	0	<loq< td=""><td>0.1534</td><td><loq< td=""></loq<></td></loq<>	0.1534	<loq< td=""></loq<>
	15 min	364965	2693222	0.136	1.59	0.1562	1.02
	30 min	138414	2603538	0.0532	0.629	0.1488	0.423
	1 hr	73836	2526019	0.0292	0.349	0.1595	0.219
	2 hr	24331	2593718	0.00938	0.117	0.1221	0.0958
	4 hr	7766	2587412	0.00300	<loq< td=""><td>0.1485</td><td><loq< td=""></loq<></td></loq<>	0.1485	<loq< td=""></loq<>
	8 hr	0	2482179	0.000	<loq< td=""><td>0.1669</td><td><loq< td=""></loq<></td></loq<>	0.1669	<loq< td=""></loq<>
	24 hr	0	2356970	0.000	<loq< td=""><td>0.1813</td><td><loq< td=""></loq<></td></loq<>	0.1813	<loq< td=""></loq<>
CM 02	Predose	0	2710000	0.000	<loq< td=""><td>0.1423</td><td><loq< td=""></loq<></td></loq<>	0.1423	<loq< td=""></loq<>
	15 min	378788	2671807	0.142	1.66	0.1344	1.24
	30 min	176491	2581415	0.0684	0.807	0.1602	0.503
	1 hr	47674	2557427	0.0186	0.225	0.1021	0.221
	2 hr	19821	2548846	0.00778	<loq< td=""><td>0.1181</td><td><loq< td=""></loq<></td></loq<>	0.1181	<loq< td=""></loq<>
	4 hr	6084	2576653	0.00236	<loq< td=""><td>0.1007</td><td><loq< td=""></loq<></td></loq<>	0.1007	<loq< td=""></loq<>
	8hr	0	2437790	0.000	<loq< td=""><td>0.1656</td><td><loq< td=""></loq<></td></loq<>	0.1656	<loq< td=""></loq<>
	24 hr	0	2397593	0.000	<loq< td=""><td>0.1735</td><td><loq< td=""></loq<></td></loq<>	0.1735	<loq< td=""></loq<>
CM 03	Predose	0	2586244	0.000	<loq< td=""><td>0.1533</td><td><loq< td=""></loq<></td></loq<>	0.1533	<loq< td=""></loq<>
	15 min	454277	2600777	0.175	2.05	0.1805	1.14
	30 min	104522	2516129	0.0415	0.493	0.0901	0.547
	1 hr	66995	2532186	0.0265	0.317	0.1171	0.270
	2 hr	17275	2535485	0.00681	<loq< td=""><td>0.1289</td><td><loq< td=""></loq<></td></loq<>	0.1289	<loq< td=""></loq<>
	4 hr	8494	2487809	0.00341	<loq< td=""><td>0.1402</td><td><loq< td=""></loq<></td></loq<>	0.1402	<loq< td=""></loq<>
	8 hr	0	2452134	0.0000	<loq< td=""><td>0.1507</td><td><loq< td=""></loq<></td></loq<>	0.1507	<loq< td=""></loq<>
	24 hr	0	2457582	0.000	<loq< td=""><td>0.1511</td><td><loq< td=""></loq<></td></loq<>	0.1511	<loq< td=""></loq<>

Table 10. ETBE Blood Concentration Analysis for Groups C and D.

		Peal	k Area				
Sample I.D.	Time point	ETBE	МТВЕ	Peak Area Ratio	Cal. Conc. (µg/ml)	Sample weight (g)	Corrected Conc. (μg/ml)
CM 08	Predose	0	2678144	0.000	<loq< td=""><td>0.1161</td><td><loq< td=""></loq<></td></loq<>	0.1161	<loq< td=""></loq<>
	15 min	270768	2683076	0.101	1.19	0.1424	0.834
	30 min	117962	2601598	0.045	0.537	0.1232	0.436
	1 hr	63368	2524024	0.0251	0.301	0.1581	0.190
	2 hr	25761	2479064	0.0104	0.129	0.161	0.0800
	4 hr	4883	2517248	0.0019	<loq< td=""><td>0.1166</td><td><loq< td=""></loq<></td></loq<>	0.1166	<loq< td=""></loq<>
	8 hr	0	2439774	0.0000	<loq< td=""><td>0.1552</td><td><loq< td=""></loq<></td></loq<>	0.1552	<loq< td=""></loq<>
	24 hr	0	2327966	0.000	<loq< td=""><td>0.2594</td><td><loq< td=""></loq<></td></loq<>	0.2594	<loq< td=""></loq<>
DF 01	Predose	0	2589962	0.000	<loq< td=""><td>0.1464</td><td><loq< td=""></loq<></td></loq<>	0.1464	<loq< td=""></loq<>
	15 min	345332	2480756	0.139	1.63	0.1302	1.26
	30 min	197482	2382581	0.083	0.976	0.1496	0.653
	1 hr	115407	2521028	0.046	0.542	0.1694	0.320
	2 hr	27345	2337992	0.0117	0.144	0.1198	0.120
	4 hr	8001	2453513	0.0033	<loq< td=""><td>0.1259</td><td><loq< td=""></loq<></td></loq<>	0.1259	<loq< td=""></loq<>
	8 hr	2106	2535169	0.00083	<loq< td=""><td>0.1418</td><td><loq< td=""></loq<></td></loq<>	0.1418	<loq< td=""></loq<>
	24 hr	0	2367633	0.000	<loq< td=""><td>0.1435</td><td><loq< td=""></loq<></td></loq<>	0.1435	<loq< td=""></loq<>
DF 02	Predose	0	2510725	0.000	<loq< td=""><td>0.1551</td><td><loq< td=""></loq<></td></loq<>	0.1551	<loq< td=""></loq<>
	15 min	297826	2381214	0.125	1.47	0.1405	1.05
	30 min	196106	2398964	0.0817	0.963	0.1737	0.554
	1 hr	59294	2427433	0.0244	0.293	0.1131	0.259
	2 hr	19440	2478320	0.00784	<loq< td=""><td>0.1038</td><td><loq< td=""></loq<></td></loq<>	0.1038	<loq< td=""></loq<>
	4 hr	6952	2464808	0.00282	<loq< td=""><td>0.0832</td><td><loq< td=""></loq<></td></loq<>	0.0832	<loq< td=""></loq<>
	8 hr	0	2407469	0.00000	<loq< td=""><td>0.1384</td><td><loq< td=""></loq<></td></loq<>	0.1384	<loq< td=""></loq<>
	24 hr	0	2296209	0.000	<loq< td=""><td>0.1636</td><td><loq< td=""></loq<></td></loq<>	0.1636	<loq< td=""></loq<>

 Table 10 (continued).
 ETBE Blood Concentration Analysis for Groups C and D.

		Peal	k Area				
Sample I.D.	Time point	ETBE	МТВЕ	Peak Area Ratio	Cal. Conc. (µg/ml)	Sample weight (g)	Corrected Conc. (μg/ml)
DF 04	Predose	0	2445110	0.000	<loq< td=""><td>0.1201</td><td><loq< td=""></loq<></td></loq<>	0.1201	<loq< td=""></loq<>
	15 min	304137	2407123	0.126	1.48	0.1473	1.01
	30 min	97237	2390413	0.0407	0.483	0.1049	0.460
	1 hr	58151	2356125	0.0247	0.296	0.1206	0.245
	2 hr	26052	2376773	0.0110	0.135	0.1346	0.101
	4 hr	11934	2406270	0.00496	<loq< td=""><td>0.0914</td><td><loq< td=""></loq<></td></loq<>	0.0914	<loq< td=""></loq<>
	8 hr	2192	2434416	0.00090	<loq< td=""><td>0.1121</td><td><loq< td=""></loq<></td></loq<>	0.1121	<loq< td=""></loq<>
	24 hr	0	2184403	0.000	<loq< td=""><td>0.1585</td><td><loq< td=""></loq<></td></loq<>	0.1585	<loq< td=""></loq<>
DF 05	Predose	0	2617559	0.000	<loq< td=""><td>0.1180</td><td><loq< td=""></loq<></td></loq<>	0.1180	<loq< td=""></loq<>
	15 min	65880	2489293	0.0265	0.317	0.1124	0.282
	30 min	39043	2483004	0.0157	0.191	0.0621	0.308
	1 hr	80375	2353090	0.0342	0.407	0.1514	0.269
	2 hr	10540	2351428	0.00448	<loq< td=""><td>0.0668</td><td><loq< td=""></loq<></td></loq<>	0.0668	<loq< td=""></loq<>
	4 hr	4837	2516128	0.00192	<loq< td=""><td>0.1207</td><td><loq< td=""></loq<></td></loq<>	0.1207	<loq< td=""></loq<>
	8 hr	0	2450106	0.00000	<loq< td=""><td>0.1513</td><td><loq< td=""></loq<></td></loq<>	0.1513	<loq< td=""></loq<>
	24 hr	0	2257636	0.000	<loq< td=""><td>0.1173</td><td><loq< td=""></loq<></td></loq<>	0.1173	<loq< td=""></loq<>

 Table 10 (continued).
 ETBE Blood Concentration Analysis for Groups C and D.